【题目】如图1,矩形ABCD中,AD=2,AB=a,点E为AD的中点,连接BE.过BE的中点F作FG⊥BE,交射线BC于点G,交边CD于H点.
(1)连接HE、HB
①求证:HE=HB;
②若a=4,求CH的长.
(2)连接EG,△BEG面积为S
①BE= (用含a的代数式表示);
②求S与a的函数关系式.
(3)如图2,设FG的中点为P,连接PB、BD.猜想∠GBP与∠DBE的关系,并说明理由.
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,A(a,0),B(0,b),a,b满足,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.
(1)求A,B两点的坐标;
(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;
(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG的角平分线交于点H,求∠G与∠H之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌牛奶供应商提供A,B,C,D,E五种不同口味的牛奶供学生选择.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如图所示两幅不完整的统计图.请根据统计图中的信息,解答下列问题:
(1)本次调查的学生有多少名?
(2)补全条形统计图,并计算出喜好C口味牛奶的学生人数对应的扇形圆心角的度数.
(3)该校共有1 200名学生订了该品牌的牛奶,牛奶供应商每天只为每名订牛奶的学生配送一盒牛奶,要使学生每天都能喝到自己喜好的品味的牛奶,牛奶供应商每天送往该校的牛奶中,B口味牛奶要比C口味牛奶约多送多少盒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有若干个仅颜色不同的红球和黑球,现往一个不透明的袋子里装进2个红球和2个黑球.
(1)随机摸出一个球是黑球的概率为 ;若先从袋子里取出m个红球(不放回),再从袋子里随机摸出一个球,将“摸到黑球”记为事件A.若事件A为必然事件,则m= ;
(2)若从袋子里一次摸出两个球,用列表法或画树状图法列出所有等可能结果,并求摸出的两球颜色不同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC,AB=AC,∠BAC=90°,点D是边BC的中点,点E在边AB上(点E不与点A、B重合),点F在边AC上,联结DE、DF.
(1)如图1,当∠EDF=90°时,求证:BE=AF;
(2)如图2,当∠EDF=45°时,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.
(1)如果EN∥BD,求证:四边形DMNE是菱形;
(2)如果EN⊥DC,求证:AN2=NCAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知C是线段AB上的一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和正方形CBGF,点F在CD上,联结AF、BD,BD与FG交于点M,点N是边AC上的一点,联结EN交AF 与点H.
(1)求证:AF=BD;
(2)如果,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com