精英家教网 > 初中数学 > 题目详情
11.前n(n>3)张卡片,在卡片上分别写上-2、0、1中的任意一个数,记为x1,x2,x3,…,xn,将卡片上的数先平方再求和,得x12+x22+x32+…+xn2=28,将卡片上的数先立方再求和,得x13+x23+x33+…+xn3=4,则x14+x24+x34+…+xn4的值是52.

分析 根据题意可以设n个数中含有a个-2,b个1,然后根据x12+x22+x32+…+xn2=28,x13+x23+x33+…+xn3=4,可以求得a、b的值,从而可以求得x14+x24+x34+…+xn4的值.

解答 解:∵前n(n>3)张卡片,在卡片上分别写上-2、0、1中的任意一个数,记为x1,x2,x3,…,xn
∴设这n个数中,含有a个-2,b个1,
∵x12+x22+x32+…+xn2=28,x13+x23+x33+…+xn3=4,
∴$\left\{\begin{array}{l}{(-2)^{2}×a+{1}^{2}×b=28}\\{(-2)^{3}×a+{1}^{3}×b=4}\end{array}\right.$
解得$\left\{\begin{array}{l}{a=2}\\{b=20}\end{array}\right.$,
∴x14+x24+x34+…+xn4=(-2)4×2+14×20=16×2+1×20=32+20=52.
故答案为:52.

点评 本题考查有理数的混合运算,解题的关键是明确题意,求出n个数中-2和1的个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,梯形ABCD的坐标为A(0,0),B(0,8),C(8,8),D(12,0).点P,Q分别从B,D出发以1个单位/秒和2个单位/秒的速度向C,O运动,设运动时间为t(s)(一点到达,另一点也停止运动).
(1)写出线段CD的中点坐标(10,4),梯形面积为80;
(2)t为何值时,四边形BPQA为长方形?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,△ABC中,∠BAC=60°,AB=2AC,点P在△ABC内,且PA=$\sqrt{3}$,PB=5,PC=2,则△ABC的面积为(  )
A.3+$\frac{7}{2}$$\sqrt{3}$B.3+$\frac{5}{2}$$\sqrt{3}$C.3+$\sqrt{3}$D.3+$\frac{1}{2}$$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在Rt△ABC中,AB=6,∠B=90°,BC=8,点P从A出发沿AC方向在运动速度为3个单位/秒,点Q从C出发向点B运动,速度为1个单位/秒,P、Q同时出发,点Q到点B时两点同时停止运动.
(1)点P在线段AC上运动,过P作DP⊥PQ交边AB于D,t=2时,求$\frac{PD}{PQ}$的值;
(2)运动t秒后,∠BPQ=90°,求此时t的值;
(3)t=$\frac{100}{23}$时,AQ=QP.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知:如图,平面直角坐标系xOy中,正方形ABCD的边长为4,它的顶点A在x轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP.设点P到y轴的距离为d,则在点A,D运动的过程中,d的取值范围是2<d≤2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读下面材料:
小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,$\frac{|{x}_{1}+{x}_{2}|}{2}$,$\frac{|{x}_{1}+{x}_{2}+{x}_{3}|}{3}$,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,-1,3,因为|2|=2,$\frac{|2+(-1)|}{2}$=$\frac{1}{2}$,$\frac{|2+(-1)+3|}{3}$=$\frac{4}{3}$,所以数列2,-1,3的价值为$\frac{1}{2}$.
小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列-1,2,3的价值为$\frac{1}{2}$;数列3,-1,2的价值为1;….经过研究,小丁发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为$\frac{1}{2}$.根据以上材料,回答下列问题:
(1)数列-4,-3,2的价值为$\frac{5}{3}$;
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为$\frac{1}{2}$,取得价值最小值的数列为-3,2,-4或2,-3,-4(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为11或4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点F在DC上,且∠BEF=∠A.
(1)∠BEF=180°-2α(用含α的代数式表示).
(2)当AB=AD时,猜想线段EB、EF的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知A点在数轴上对应有理数a,现将A右移5个单位长度后再向左移7个单位长度到达B点,B点在数轴上对应的有理数为$-\frac{3}{2}$,则有理数a=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列计算正确的是(  )
A.a-(2a-b)=-a-bB.(a2-2ab+a)÷a=a-2b
C.${({-\frac{1}{3}{a^2}})^3}=-\frac{1}{9}{a^6}$D.(a+2b)(a-b)=a2+ab-2b2

查看答案和解析>>

同步练习册答案