【题目】计算:( )﹣2﹣(π﹣3.14)0+|1﹣ |﹣2sin45°.
【答案】解:( )﹣2﹣(π﹣3.14)0+|1﹣ |﹣2sin45°
=4﹣1+ ﹣1﹣2×
=2+ ﹣
=2
【解析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式( )﹣2﹣(π﹣3.14)0+|1﹣ |﹣2sin45°的值是多少即可.
【考点精析】通过灵活运用零指数幂法则和整数指数幂的运算性质,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数)即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,点A是双曲线y= (x>0)上的一点,连结OA,在线段OA上取一点B,作BC⊥x轴于点C,以BC的中点为对称中心,作点O的中心对称点O′,当O′落在这条双曲线上时, = .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图1和图2两幅尚不完整的统计图中.
(1)B班参赛作品有多少件?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪个班的获奖率高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上(如图3),给出四个结论:
①AF的长为10;②△BGH的周长为18;③ = ;④GH的长为5,
其中正确的结论有 . (写出所有正确结论的番号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.
(1)求证:△BDE∽∠ADB;
(2)试判断直线DF与⊙O的位置关系,并说明理由;
(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.
(1)求证:DF是⊙O的切线;
(2)求FG的长;
(3)求tan∠FGD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,游戏者同时转动两个转盘,配成紫色的概率是多少?请用树状图或列表说明理由(蓝色和红色能配成紫色).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3, ),点C的坐标为( ,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨询得到的信息:
根据上述信息,求小明乘坐城际直达动车到上海所需的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com