【题目】如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3, ),点C的坐标为( ,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )
A.
B.
C.
D.2
【答案】B
【解析】解:法一:
作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,
则此时PA+PC的值最小,
∵DP=PA,
∴PA+PC=PD+PC=CD,
∵B(3, ),
∴AB= ,OA=3,∠B=60°,由勾股定理得:OB=2 ,
由三角形面积公式得: ×OA×AB= ×OB×AM,
∴AM= ,
∴AD=2× =3,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN= AD= ,由勾股定理得:DN= ,
∵C( ,0),
∴CN=3﹣ ﹣ =1,
在Rt△DNC中,由勾股定理得:DC= = ,
即PA+PC的最小值是 ,
法二:
如图,作点C关于OB的对称点D,连接AD,过点D作DM⊥OA于M.
∵AB= ,OA=3
∴∠AOB=30°,
∴∠DOC=2∠AOB=60°
∵OC=OD
∴△OCD是等边三角形
∴DM=CDsin60°= ,OM=CM=CDcos60°=
∴AM=OA﹣OM=3﹣ =
∴AD =
即PA+PC的最小值为
故选:B.
作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.
科目:初中数学 来源: 题型:
【题目】甲从M地骑摩托车匀速前往N地,同时乙从N地沿同一条公路骑自行车匀速前往M地,甲到达N地后,原路原速返回,追上乙后返回到M地.设甲、乙与N地的距离分别为y1、y2千米,甲与乙之间的距离为s千米,设乙行走的时间为x小时.y1、y2与x之间的函数图象如图1.
(1)分别求出y1、y2与x的函数表达式;
(2)求s与x的函数表达式,并在图2中画出函数图象;
(3)当两人之间的距离不超过5千米时,能够用无线对讲机保持联系.并且规定:持续联系时间不少于15分钟为有效联系时间.求当两人用无线对讲机保持有效联系时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=﹣ x﹣1与反比例函数 (x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为( )
A.﹣2
B.﹣4
C.﹣6
D.﹣8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(3,2)和点M(m,n)都在反比例函数y= (x>0)的图象上.
(1)求k的值,并求当m=4时,直线AM的解析式;
(2)过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,直线AM交x轴于点Q,试说明四边形ABPQ是平行四边形;
(3)在(2)的条件下,四边形ABPQ能否为菱形?若能,请求出m的值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,船A、B在东西方向的海岸线MN上,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,在船B的北偏西37°方向上,AP=30海里.
(1)尺规作图:过点P作AB所在直线的垂线,垂足为E(要求:保留作图痕迹,不写作法);
(2)求船P到海岸线MN的距离(即PE的长);
(3)若船A、船B分别以20海里/时、15海里/时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:
①abc<0;② >0;③ac﹣b+1=0;④OAOB=﹣ .
其中正确结论的个数是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:
(1)周三没有被选择的概率;
(2)选择2天恰好为连续两天的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC,CF.
(1)求证:CD是⊙O的切线;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com