精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数轴交于两点,与轴交于顶点,已知.

1)求此二次函数的解析式及点坐标.

2)在抛物线上存在一点使的面积为10,不存在说明理由,如果存在,请求出的坐标.

3)根据图象直接写出时,的取值范围.

【答案】1)二次函数解析式为点坐标为;2;3.

【解析】

1)将已知的两点坐标代入抛物线中,即可求得抛物线的解析式;.2)设,然后利用三角形的面积计算即可;3)根据图象可得出y的取值范围..

解:(1)将代入中,

得:

解得.

所以二次函数解析式为.

,即,解得:.

点坐标为.

2)设

的面积为10

解方程

此时点坐标为.

方程没有实数解.

综上所述,点坐标为.

3)如图所示,

时,

时,有最小值,

代入中,得.

时,有最大值.

代入中,得.

的取值范围是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数为常数且)中的的部分对应值如下表:

1

0

1

3

1

3

5

3

给出了结论:

1)二次函数有最大值,最大值为5;(2;(3时,的值随值的增大而减小;(43是方程的一个根;(5)当时,.则其中正确结论的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映yx之间关系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的一条边BC的长为5,另两边AB,AC的长分别为关于x的一元二次方程的两个实数根。

1)求证:无论k为何值,方程总有两个不相等的实数根;

2)当k=2时,请判断△ABC的形状并说明理由;

3k为何值时,△ABC是等腰三角形,并求△ABC的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:

(1)函数的自变量x的取值范围是

(2)下表是xy的几组对应值.

...

1

2

3

...

...

m

...

m的值;

(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在五边形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,试猜想BCCDDE之间的数量关系.小明经过仔细思考,得到如下解题思路:

将△ABC绕点A逆时针旋转90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即点DEF三点共线,易证△ACD   ,故BCCDDE之间的数量关系是   

2)如图2,在四边形ABCD中,ABAD,∠ABC+D180°,点EF分别在边CBDC的延长线上,∠EAFBAD,连接EF,试猜想EFBEDF之间的数量关系,并给出证明.

3)如图3,在△ABC中,∠BAC90°ABAC,点DE均在边BC上,且∠DAE45°,若BD2CE3,则DE的长为   

查看答案和解析>>

同步练习册答案