【题目】如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则;⑤BGDE+AFGE=a2.其中正确的是____________.(写出所有正确判断的序号)
【答案】①②④⑤.
【解析】
①由折叠得AD=AF=AB,再由HL定理证明Rt△ABG≌Rt△AFG便可判定正误;
②设BG=GF=x,由勾股定理可得求得BG=,进而得GC=GF,得∠GFC=∠GCF,再证明∠AGB=∠GCF,便可判断正误;
③设BG=GF=y,则CG=a-y,由勾股定理得y的方程求得BG,GF,EF,再由同高的两个三角形的面积比等于底边之比,求得△CGF的面积,便可判断正误;
④证明∠FEC=∠FCE,得EF=CF=GF,进而得EG=2DE,CG=CE=a-DE,由等腰直角三角形的斜边与直角边的关系式便可得结论,进而判断正误;
⑤设BG=GF=b,DE=EF=c,则CG=a-b,CE=a-c,由勾股定理得再得△CEG的面积为BGDE,再由五边形ABGED的面积加上△CEG的面积等于正方形的面积得结论,进而判断正误.
解:①∵四边形ABCD是正方形,
∴AB=BC=AD=a,
∵将△ADE沿AE对折至△AFE,
∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE,∠DAE=∠FAE,
在Rt△ABG和Rt△AFG中 ,
,
∴Rt△ABG≌Rt△AFG(HL),
∴∠BAG=∠FAG,
∴∠GAE=∠GAF+∠EAF=×90°=45°,故①正确;
② Rt△ABG≌Rt△AFG
∴BG=GF,∠BGA=∠FGA,
设BG=GF=x,
∵DE=a,
∴EF=a, ∴CG=a-x,
在Rt△EGC中,EG=x+a,CE=a,
由勾股定理可得:
解得:
此时BG=GF=a,CG=a,
∴GC=GF, ∴∠GFC=∠GCF,
∵∠BGF=∠GFC+∠GCF,
∴2∠AGB=∠GFC+∠GCF=2∠GCF,
∴∠AGB=∠GCF,
∴AG∥CF,/span> ∴②正确;
③若E为CD的中点,则DE=CE=EF=a,
设BG=GF=y,则CG=a-y,
由, 即
解得:y= a,
∴BG=GF=a,CG=
∴
∴S△CFG=S△CEG= 故③错误;
④当CF=FG,则∠FGC=∠FCG,
∵∠FGC+∠FEC=∠FCG+∠FCE=90°,
∴∠FEC=∠FCE, ∴EF=CF=GF,
∴BG=GF=EF=DE,
∴EG=2DE,CG=CE=a-DE,
∴ CE=EG,即(aDE)=2DE, ∴DE=, 故④正确;
⑤设BG=GF=b,DE=EF=c,则CG=a-b,CE=a-c,
由勾股定理得:
整理得:
∴S△CEG=(ab)(ac)=()=(bc+bc)=bc,
即S△CEG=BGDE,
∵S△ABG=S△AFG,S△AEF=S△ADE,
∴S五边形ABGED=2S△AGE=2×AFEG=AFEG,
∵S五边形BGED+S△CEG=S正方形ABCD,
∴BGDE+AFEG=故⑤正确.
故答案为:①②④⑤.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.
(1)求抛物线的解析式;
(2)x轴上是否存在点P,使PC+PB最小?若存在,请求出点P的坐标及PC+PB的最小值;若不存在,请说明理由;
(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x>0)的图象与线段AB相交于点C,C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(m,6)(m≠6),若△OAB的面积为12,则k的值为( )
A.4B.6C.8D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O 中,AB 为直径,点 P 在BA 的延长线上,PC 为⊙O 的切线,过点 A 作AH⊥PC 于点 H, 交⊙O 于点 D,连接 BC、BD、AC.
(1)如图 1,求证:∠CAH=∠CAB;
(2)如图 2,过点 C 作 CE⊥AB 于点 E,求证:BD=2CE;
(3)如图 3,在(2)的条件下,点 F 在BC 上,连接 DF、EF,若 BG=2AE,∠CFE=45°,OG=1,求线段 EF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知二次函数y=ax2+4ax+c(a<0)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D,DH⊥x轴于H与AC交于点E.连接CD、BC、BE.若S△CBE∶S△ABE=2∶3,
(1)点A的坐标为 ,点B的坐标为 ;
(2)连结BD,是否存在数值a,使得∠CDB=∠BAC?若存在,请求出a的值;若不存在,请说明理由;
(3)若AC恰好平分∠DCB,求二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点,与轴交于点,(点在点左侧).直线与抛物线的对称轴交于点.
(1)求抛物线的对称轴;
(2)直接写出点的坐标;
(3)点与点关于抛物线的对称轴对称,过点作轴的垂线与直线交于点,若,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与,轴分别交于点,,与反比例函数图象交于点,,过点作轴的垂线交该反比例函数图象于点.
求点的坐标.
若.
①求的值.
②试判断点与点是否关于原点成中心对称?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com