【题目】在平面直角坐标系中,点的坐标为,点的变换点的坐标定义如下:
当时,点的坐标为;当时,点的坐标为.
(1)点的变换点的坐标是 ;点的变换点为,连接,则 °;
(2)已知抛物线与轴交于点,(点在点的左侧),顶点为.点在抛物线上,点的变换点为.若点恰好在抛物线的对称轴上,且四边形是菱形,求的值;
(3)若点是函数图象上的一点,点的变换点为,连接,以为直径作,的半径为,请直接写出的取值范围.
【答案】(1)(﹣3,1);90°;(2)或或;(3)的取值范围是.
【解析】
(1)依据对应的定义可直接得点、的坐标,然后依据题意画出图形,过点作轴,垂足为,过点轴,垂足为.接下来证明.由全等三角形的性质得到,然后可求得.
(2)抛物线的顶点E的坐标为E(-2,m),m>0,设点P的坐标为
,①若,则点的坐标为.
然后依据点恰好在抛物线的对称轴上,且四边形是菱形,可得到关于x和m的方程组,从而可求得m的值;②若,则点的坐标为.同理可列出关于x、m的方程组,从而求得m的值;
(3)设点F的坐标为,依据题意可得到点的坐标为,然后依据两点间的距离公式可得到的长度与x的函数关系式,从而可求得的取值范围,然后可求得r的取值范围.
(1)∵点,3>1,
∴点的对应点的坐标是(﹣3,1).
∵,﹣4<2,
∴点的变换点为的坐标为(﹣2,﹣4).
过点作轴,垂足为,过点轴,垂足为.
∵,
∴.
在和中,
∴.
∴.
∵,
∴.
∴.
故答案为:(﹣3,1);90°.
(2)由题意得的顶点的坐标为.
∵点在抛物线上,
∴设点的坐标为.
①若,则点的坐标为.
∵点恰好在抛物线的对称轴上,且四边形是菱形,
∴
∴,符合题意。
②若,则点的坐标为.
∵点恰好在抛物线的对称轴上,且四边形是菱形,
∴
∴或,符合题意.
综上所述,或或.
(3)设点的坐标为.
当时,解得:,不合题意.
当时,解得:,符合题意.
∵点的坐标为,且,
∴点的坐标为.
∴.
∴当时,有最小值,的最小值,当时,有最大值,的最大值.
∴的取值范围为:.
∵,
∴的取值范围是.
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,和均为等边三角形,直线AD和直线BE交于点F.
填空:①的度数是____;②线段AD,BE之间的数量关系为________;
(2)类比探究
如图2,和均为等腰直角三角形,,直线AD和直线BE交于点F.请判断的度数及线段AD,BE之间的数量关系,并说明理由,
(3)如图3,在中,,点D在AB边上,, ,将绕着点A在平面内旋转,请直接写出直线DE经过点B时,点C到直线DE的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.
(1)求证:PM=PN;
(2)当P,A重合时,求MN的值;
(3)若△PQM的面积为S,求S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/.在乙批发店,一次购买数量不超过时,价格为7元/;一次购买数量超过时,其中有的价格仍为7元/,超过部分的价格为5元/.设小王在同一个批发店一次购买苹果的数量为.
(Ⅰ)根据题意填空:
①若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
②若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
(Ⅱ)设在甲批发店花费元,在乙批发店花费元,分别求,关于的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为_________;
②若小王在同一个批发店一次购买苹果的数量为,则他在甲、乙两个批发店中的________批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了260元,则他在甲、乙两个批发店中的_________批发店购买数量多.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小
组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,
以下是根据调查结果绘制的统计图的一部分:
请根据以上信息解答下列问题:
(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;
(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢的教师有36人,求喜欢的教师的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:
(1)本次被抽取的学生共有_______名;
(2)请补全条形图;
(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;
(4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,BD为⊙O的直径,过点A作AE⊥BD于点E,延长BD交AC延长线于点F.
(1)若AE=4,AB=5,求⊙O的半径;
(2)若BD=2DF,求sin∠ACB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com