精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD⊙O的直径,PCD延长线上的一点,且AP=AC.则PD的长为_____

【答案】

【解析】

如图,连接AD,构建直角ADC.利用圆周角定理求得∠ADC=B=60°,所以通过解该直角三角形求得线段AD的长度.然后由三角形内角和定理,等腰APC的性质推知AD=PD.

如图,连接AD.
∵∠ADC=B,B=60°,
∴∠ADC=60°.
又∵CD是⊙O的直径,
∴∠DAC=90°,
AC=3,
AD=ACcot60°=.
AP=AC,
∴∠P=ACP=30°.
又∵∠ADC=P+DAP=60°,
∴∠P=DAP=30°,
PD=AD=.
故答案是:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A(1,yA),B(0,yB),C(-1,yC),D(x1yD)(x1≠1)在抛物线上,且AD//BCAA1轴于A1DFAAlF,CE轴于E

(1)求证:△ADF∽△BCE

(2)当时,求的值;

(3)的值会随abc的值改变而改变吗?若会,请求出abc的关系式;若不会,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目.以下是根据调查结果绘制的统计图表的一部分.

类别

A

B

C

D

E

节目类型

新闻

体育

动画

娱乐

戏曲

人数

12

30

m

54

9

根据以上信息,解答下列问题:

(1)被调查的学生中,最喜爱体育节目的有   人,这些学生数占被调查总人数的百分比为   %.

(2)被调查学生的总人数为   人,统计表中m的值为   ,统计图中n的值为   

(3)在统计图中,B类所对应扇形圆心角的度数为   

(4)该校共有1000名学生,根据调查结果,估计该校最喜爱A类节目的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是以O为圆心的半圆的直径,半径COAO,点M上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OMCM.

(1)若半圆的半径为10.

①当∠AOM=60°时,求DM的长;

②当AM=12时,求DM的长.

(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的对角线AC上的一个动点(不与AC重合),作EFAC交边BC于点F,连接AFBE交于点G

(1)求证:CAF∽△CBE

(2)若AF平分∠BAC,求证:AC2=2AGAF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC外角∠EAC的平分线,ADABC的外接圆⊙O交于点D

(1)求证:DBDC

2)若∠CAB30°BC4,求劣弧的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,AC平分DAB交O于点C,过点C的直线垂直于AD交AB的延长线于点P,弦CE交AB于点F,连接BE.

(1)求证:PD是O的切线;

(2)若PC=PF,试证明CE平分∠ACB.

查看答案和解析>>

同步练习册答案