精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的周长是20cm,以ABAD为边向外作正方形ABEF和正方形ADGH,若正方形ABEFADGH的面积之和为68cm2,那么矩形ABCD的面积是(  )

A. 9cm2 B. 16cm2 C. 21cm2 D. 24cm2

【答案】B

【解析】

设出矩形的长与宽分别为x、y,根据两正方形的面积和矩形的周长列出方程,然后结合完全平方公式求出xy的值,也就是矩形的面积.

设AB=x,AD=y,根据题意,得
x2+y2=68①,2(x+y)=20②,
由②得:x+y=10,
由①,得(x+y)2-2xy=68,
100-2xy=68,
∴2xy=100-68=32,
∴xy=16.
矩形ABCD的面积是16cm2

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:

用户月用水量频数分布表

平均用水量(吨)

频数

频率

3~6吨

10

0.1

6~9吨

m

0.2

9~12吨

36

0.36

12~15吨

25

n

15~18吨

9

0.09

请根据上面的统计图表,解答下列问题:

(1)在频数分布表中:m=__ __,n=__ __;

(2)根据题中数据补全频数直方图;

(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

如图1,在线段AB上找一点C(AC>BC),若BC:AC=AC:AB,则称点C为线段AB的黄金分割点,这时比值为≈0.618,人们把称为黄金分割数.长期以来,很多人都认为黄金分割数是一个很特别的数,我国著名数学家华罗庚先生所推广的优选法中,就有一种0.618法应用了黄金分割数.

我们可以这样作图找到已知线段的黄金分割点:如图2,在数轴上点O表示数0,点E表示数2,过点E作EF⊥OE,且EF=OE,连接OF;以F为圆心,EF为半径作弧,交OF于H;再以O为圆心,OH为半径作弧,交OE于点P,则点P就是线段OE的黄金分割点.

根据材料回答下列问题:(1)线段OP长为_____,点P在数轴上表示的数为_____;(2)在(1)中计算线段OP长的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图12分别是某款篮球架的实物图与示意图,已知ABBC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB60°,点H在支架AF上,篮板底部支架EHBCEFEH于点E,已知AH米,HF米,HE1米.

(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.

(2)求篮板底部点E到地面的距离.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:

(1)若小明随机选择一个插座插入,则插入A的概率为   

(2)现小明对手机和学习机两种电器充电,请用列表或画树状图的方法表示出两个插头插入插座的所有可能情况,并计算两个插头插在相邻插座的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD空地上种植草皮.如图,经测量∠B90°,AB6米,BC8米,CD24米,AD26米,若每平方米草皮需要300元,问需要投入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级一班开展了读一本好书的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了小说”“戏剧”“散文”“其他四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.

 类别

 频数(人数)

 频率

 小说

16

 

 戏剧

4

 散文

a

 

 其他

b

 合计

 1

根据图表提供的信息,解答下列问题:

(1)直接写出a,b,m的值;

(2)在调查问卷中,甲、乙、丙、丁四位同学选择了戏剧类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好乙和丙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.

(1)求证:DE是O的切线;

(2)当O半径为3,CE=2时,求BD长.

查看答案和解析>>

同步练习册答案