精英家教网 > 初中数学 > 题目详情

【题目】红红和娜娜按如图所示的规则玩一次锤子、剪刀、布游戏,下列命题中错误的是(

A.红红不是胜就是输,所以红红胜的概率为

B.红红胜或娜娜胜的概率相等

C.两人出相同手势的概率为

D.娜娜胜的概率和两人出相同手势的概率一样

【答案】A.

【解析】

试题解析:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:

红红

娜娜

石头

剪刀

石头

(石头,石头)

(石头,剪刀)

(石头,布)

剪刀

(剪刀,石头)

(剪刀,剪刀)

(剪刀,布)

(布,石头)

(布,剪刀)

(布,布)

由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).

因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为

红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,

故选项B,C,D不合题意;

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的切线,点C在直径AB的延长线上.

(1)求证:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:

温度t/

5

3

2

植物高度增长量h/mm

34

46

41

科学家推测出hmm)与t之间的关系可以近似地用二次函数来刻画.已知温度越适合,植物高度增长量越大,由此可以推测最适合这种植物生长的温度为(  )

A. 2 B. 1 C. 0 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF=45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)设AEm

①△AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线y=x2+bx(b>2)上存在关于直线y=x成轴对称的两个点,则b的取值范围是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】师大一中准备办自己的农场,如果设计成等腰三角形的样子,要求等腰三角形的一边长为20,面积为 160,则该等腰三角形的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是(  )

A. m2 B. m2 C. m2 D. 12πm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 y=ax2﹣5ax+c x 轴于点 A,点 A 的坐标为(4,0).

(1)用含 a 的代数式表示 c

(2) a时,求 x 为何值时 y 取得最小值,并求出 y 的最小值.

(3) a时,求 0≤x≤6 y 的取值范围.

(4)已知点 B 的坐标为(0,3),当抛物线的顶点落在△AOB 外接圆内部时,直接写出 a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

同步练习册答案