【题目】如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
【答案】(1);(2);(3)恒为定值.
【解析】
(1)由抛物线解析式可得顶点A坐标为(0,-2),利用待定系数法即可得直线AB解析式;
(2)如图,过点作于,根据角平分线的性质可得BE=BN,由∠BND=∠CED=90°,∠BND=∠CDE可证明,设BE=x,BD=y,根据相似三角形的性质可得CE=2x,CD=2y,根据勾股定理由得y与x的关系式,即可用含x的代数式表示出C、D坐标,代入y=ax2-2可得关于x、a的方程组,解方程组求出a值即可得答案;
(3)过点作于点,根据平移规律可得抛物线W1的解析式为y=x2-2-m,设点的坐标为(t,0)(t<0),代入y=x2-2-m可得2+m=t2,即可的W1的解析式为y=x2-t2,联立直线BC解析式可用含t的代数式表示出点C1的坐标,即可得,可得∠,根据抛物线W的解析式可得点D坐标,联立直线BC与抛物线W的解析式可得点C、A坐标,即可求出CG、DG的长,可得CG=DG,∠CDG=∠,即可证明,可得,,由∠CDG=45°可得BF=DF,根据等腰三角形的性质可求出DF的长,利用勾股定理可求出CD的长,即可求出CF的长,根据三角函数的定义即可得答案.
(1)∵抛物线W:的顶点为点,
∴点,
设直线解析式为,
∵B(1,0),
∴,
解得:,
∴抛物线解析式为:.
(2)如图,过点作于,
∵平分,,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
设,则,
∵,
∴,
∴,
∴,
∴点,点,
∴点,点是抛物线W:上的点,
∴,
∵x>0,
∴,
解得:(舍去),,
∴,
∴,
∴抛物线解析式为:.
(3)恒为定值,理由如下:
如图,过点作轴于H,过点作轴G,过点作于点,
∵a=,
∴抛物线W的解析式为y=x2-2,
∵将抛物线W向下平移m个单位,得到抛物线,
∴抛物线的解析式为:,
设点的坐标为,
∴,
∴,
∴抛物线的解析式为:,
∵抛物线与射线的交点为,
∴,
解得:,(不合题意舍去),
∴点的坐标,
∴,
∴,
∴,且轴,
,
∵与轴交于点,
∴点,
∵与交于点,点,
∴,
解得:或,
∴点,A(0,-2),
∴,
∴,且轴,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵点,点,
∴,
∴,
∴,
∴恒为定值.
科目:初中数学 来源: 题型:
【题目】问题:如图1,五环图案内写有5个正整数,请对5个整数作规律探索,找出同时满足以下3个条件的数;①是三个连续偶数;②是两个连续奇数;③满足.尝试: 取,如图2,,5个正整数满足要求;
(1)取,能写出满足条件的5个正整数吗?如果能,写出的值;如果不能,说明理由.
(2)取,能写出满足条件的5个正整数吗?如果能,写出的值;如果不能,说明理由.
(3)猜想: 若5个正整数能满足上述三个要求,偶数具备怎样的条件?
(4)概括: 现有5个正整数满足问题中的三个条件,请用含的代数式表示(设为正整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).
(1)求抛物线的解析式;
(2)如图2,点E是BD上方抛物线上的一点,连接AE交DB于点F,若AF=2EF,求出点E的坐标.
(3)如图3,点M的坐标为(,0),点P是对称轴左侧抛物线上的一点,连接MP,将MP沿MD折叠,若点P恰好落在抛物线的对称轴CE上,请求出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.
(1)求证:PM=PN;
(2)当P,A重合时,求MN的值;
(3)若△PQM的面积为S,求S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校一面墙前有一块空地,校方准备用长的栅栏()围成一个一面靠墙的长方形花围,再将长方形分割成六块(如图所示) ,已知,,,设.
(1)用含的代数式表示: ; .
(2)当长方形的面积等于时,求的长.
(3)若在如图的甲区域种植花卉.乙区域种柏草坪,种柏花卉的成本为每平方米100元,种被草坪的成本为每平方米50元,若种植花卉与草坪的总费用超过6300元,求花围的宽的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/.在乙批发店,一次购买数量不超过时,价格为7元/;一次购买数量超过时,其中有的价格仍为7元/,超过部分的价格为5元/.设小王在同一个批发店一次购买苹果的数量为.
(Ⅰ)根据题意填空:
①若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
②若一次购买数量为时,在甲批发店的花费为________元,在乙批发店的花费为________元;
(Ⅱ)设在甲批发店花费元,在乙批发店花费元,分别求,关于的函数解析式;
(Ⅲ)根据题意填空:
①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为_________;
②若小王在同一个批发店一次购买苹果的数量为,则他在甲、乙两个批发店中的________批发店购买花费少;
③若小王在同一个批发店一次购买苹果花费了260元,则他在甲、乙两个批发店中的_________批发店购买数量多.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小
组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,
以下是根据调查结果绘制的统计图的一部分:
请根据以上信息解答下列问题:
(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;
(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢的教师有36人,求喜欢的教师的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,将△ABC绕点C顺时针旋转,点A、B的对应点分别为A1、B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com