【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点,点绕点B旋转180°得到点,点绕点C旋转180°得到点,点绕点A旋转180°得到点,…,按此作法进行下去,则点的坐标为( )
A.(0,4)B.(﹣2,0)C.(2,﹣4)D.(﹣2,﹣2)
科目:初中数学 来源: 题型:
【题目】有理数a、b、c在数轴上的位置如图所示.
(1)化简:|a|= |b|= ;
(2)比较大小a﹣c 0,a+b 0.
(3)将a,b,c,﹣a,﹣b,﹣c按从小到大的顺序,用“<”号连接.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x<2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:
(1)这次随机抽取了 名学生进行调查;扇形统计图中,扇形B的圆心角的度数为 .
(2)补全频数分布直方图;
(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车厂计划一周生产自行车2100辆,平均每天计制生产300辆,实际每天生产量与计划量相比有出入,下表是某周的生产情况.(超过每天计划生产数记为正,不足每天计划生产数记为负)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
每天超出计划的量数 |
(1)该厂星期四实际生产自行车______辆
(2)该厂本周实际每天平均生产多少辆自行车?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a,b,c,d,那么利用公式a×23-b×22-c×21+d计算出每一行的数据.第一行表示年级,第二行表示班级,如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的编号是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(概念学习)
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把 (a≠0)记作a,读作“a的圈n次方”.
(1)(初步探究)
直接写出计算结果:2③=_______,(-)⑤=_______;
(2)(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(﹣3)④=_______;5⑥=_______; (-) ⑩=_______.
Ⅱ. 想一想:将一个非零有理数a的圈n次方写成幂的形式等于_______;
Ⅲ. 算一算:
12÷(-)④×(-2)⑤-(-)⑥÷3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①已知△ACB和△DCE为等腰直角三角形,按如图的位置摆放,直角顶点
C重合.
(1)求证:AD=BE;
(2)将△DCE绕点C旋转得到图②,点A、D、E在同一直线上时,若CD=,BE=3,
求AB 的长;
(3)将△DCE绕点C顺时针旋转得到图③,若∠CBD=45°,AC=6,BD=3,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:我们知道|a|的几何意义是在数轴上数a对应的点与原点的距离,即|a|=|a﹣0|,也就是说,|a|表示在数轴上数a与数0对应点之间的距离.这个结论可以推广为:|a﹣b|表示在数轴上数a与b对应点之间的距离.
例1 已知|a|=2,求a的值.
解:在数轴上与原点距离为2的点的对应数为﹣2和2,即a的值为2和﹣2.
例2 已知|a﹣1|=2,求a的值.
解:在数轴上与1的距离为2点的对应数为3和﹣1,即a的值为3和﹣1.
仿照阅读材料的解法,解决下列问题:
(1)已知|a|=,求a的值;
(2)已知|a+2|=4,求a的值;
(3)若数轴上表示a的点在﹣4与2之间,则|a+4|+|a﹣2|的值为 ;
(4)当a满足 时,则|a+4|+|a﹣2|的值最小,最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com