【题目】如图,在平面直角坐标系中,四边形是平行四边形,,若,的长是关于的一元二次方程的两个根,且.
(1)直接写出:______,______;
(2)若点为轴正半轴上的点,且;
①求经过,两点的直线解析式;
②求证:.
(3)若点在平面直角坐标系内,则在直线上是否存在点,使以,,,为顶点的四边形为菱形?若存在,直接写出点的坐标,若不存在,请说明理由.
【答案】(1)4,3;(2)①;,②证明见解析;(3);;;.
【解析】
(1)解一元二次方程求出OA,OB的长度即可;
(2)先根据三角形的面积求出点E的坐标,并根据平行四边形的对边相等的性质求出点D的坐标,然后利用待定系数法求解直线的解析式;分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;
(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.
(1)方程,
分解因式得:,
可得:,,
解得:,,
∵,
∴,;
故答案为4,3;
(2)①根据题意,设,则,
解得:,
∴,
∵四边形是平行四边形,
∴点的坐标是,
设经过、两点的直线的解析式为,
则,
解得:,
∴解析式为;
②如图,
在与中,,,
∴,
又∵,
∴;
(3)根据计算的数据,,
∵,
∴平分,
分四种情况考虑:
①、是邻边,点在射线上时,,
∴点与重合,即;
②、是邻边,点在射线上时,应在直线上,且垂直平分,
此时点坐标为;
③是对角线时,做垂直平分线,解析式为,直线过,且值为(平面内互相垂直的两条直线值乘积为-1),
∴解析式为,
联立直线与直线,得:,
解得:,,
∴;
④是对角线时,过作垂线,垂足为,
∵,
∴,
在中,,,
根据勾股定理得,即,
做关于的对称点,记为,,
过做轴垂线,垂足为,,
∴,
综上所述,满足条件的点有四个:;;;.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.25.其中正确的结论是_____.(把你认为正确结论序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次测量旗杆高度的活动中,某数学兴趣小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB,CD,EF都垂直于地面,若AB=1.6米,CD=2米,人与标杆之间的距离BD=1米,标杆与旗杆之间的距离DF=30米,求旗杆EF的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为【 】
A. B.1 C.或1 D.或1或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2).
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上是否存在点P,使得S△ABP=S△ABO.若存在,请直接写出点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红家的阳台上放置了一个晒衣架如图①.图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面.经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm.垂挂在衣架上的连衣裙总长度小于________cm时,连衣裙才不会拖落到地面上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2019个正方形的面积是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】酒局上经常两人玩猜拳游戏.游戏规则是:每人同时伸出一只手的几个手指(手指数可以是0、1、2、3、4、5),并同时口中喊出一个数,若某人喊出的数恰好等于两人的手指数的和,而另一个人喊出的数与两人的手指数的和不等,就算喊对的人赢,输的人就要喝酒,两人都喊对了或都没喊对,就重来.在某次甲乙两人猜拳时,甲说:“我让让你,我就喊一个数5,其他的数我都不喊,都归你喊,如何?”请你用学过的概率知识加以分析,试说明甲是否作出了让步.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com