【题目】如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、
B(0,1)、C(d,2)。
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图
像上。请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P,
使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。
【答案】(1)-3(2),(3)P′(,5),M′(,0),则点P′为所求的点P,点M′为所求的点M。
【解析】
解:(1)作CN⊥x轴于点N。
在Rt△CNA和Rt△AOB中,
∵NC=OA=2,AC=AB
∴Rt△CNA≌Rt△AOB(HL)。
∴AN=BO=1,NO=NA+AO=3,
又∵点C在第二象限,∴d=-3。
(2)设反比例函数为,点C′和B′在该比例函数图像上,
设C′(c,2),则B′(c+3,1)。
把点C′和B′的坐标分别代入,得k=2 c;k=c+3。
∴2 c=c+3,c=3,则k=6。∴反比例函数解析式为。
得点C′(3,2);B′(6,1)。
设直线C′B′的解析式为y=ax+b,把C′、B′两点坐标代入得,解得。
∴直线C′B′的解析式为。
(3)设Q是G C′的中点,由G(0,3),C′(3,2),得点Q的横坐标为,点Q的纵坐标为
2+。∴Q(,)。
过点Q作直线l与x轴交于M′点,
与的图象交于P′点,若四边形P′G M′ C′是平行四边形,则有P′Q=Q M′,易知点M′的横坐标大于,点P′的横坐标小于。
作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x轴于点F,
则△P′EQ≌△QFM′ 。
设EQ=FM′=t,则点P′的横坐标x为,点P′的纵坐标y为,
点M′的坐标是(,0)。
∴P′E=。
由P′Q=QM′,得P′E2+EQ2=QF2+FM′2,∴,
整理得:,解得(经检验,它是分式方程的解)。
∴,,。
∴P′(,5),M′(,0),则点P′为所求的点P,点M′为所求的点M。
(1)作CN⊥x轴于点N,由Rt△CNA≌Rt△AOB即可求得d的值。
(2)根据平移的性质,用待定系数法求出反比例函数和直线B′C′的解析式。
(3)根据平行四边形对角线互相平分的性质,取G C′的中点Q,过点Q作直线l与x轴交于M′点,与的图象交于P′点,求出P′Q=Q M′的点M′和P′的坐标即可。
科目:初中数学 来源: 题型:
【题目】如图,在函数y=(x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=______.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南果梨是东北辽宁省的一大特产,现有20筐南国梨,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
与标准质量的差值 (单位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐南果梨中,最重的一筐比最轻的一筐重多少千克?
(2)与标准重量比较,20筐南果梨总计超过或不足多少千克?
(3)若南果梨每千克售价4元,则这20筐可卖多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)对于任意正实数a、b,
∵(﹣)2≥0,
∴a﹣2+b≥0,
∴a+b≥2,(只有当a=b时,a+b等于2).
(1)(获得结论)在a+b≥2(a、b均为正实数)中,若ab为定值p,
则a+b≥2,只有当a=b时,a+b有最小值2.
根据上述内容,回答下列问题:若m>0,只有当m= 时,m+有最小值 .
(2)(探索应用)已知点Q(﹣3,﹣4)是双曲线y=上一点,过Q作QA⊥x轴于点A,作QB⊥y轴于点B.点P为双曲线y=(x>0)上任意一点,连接PA,PB,求四边形AQBP的面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b<的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:
(1)用含 的代数式表示地面的总面积 ;
(2)已知 ,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 元,那么小王铺地砖的总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学著作《算术研究》一书中,对于任意实数,通常用x 表示不超过 x 的最大整数,如 3 , 2 2 , 2.1 3 。给出如下结论:①x x ;②若x n ,则 x 的取值范围是 n x n 1 ;③当1 x 1 时, 1 x 1 x 的值为 1 或 2;④ x 2.75 是方程 4x 2x 5 0 的唯一一个解。其中正确的结论有( )
A.①②B.②③C.①③D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com