【题目】如图,在RT△ABC中,∠ACB=90°,AC=6,BC=8,矩形CDEF的顶点E为AB的中点,D,F两点分别在边AC,BC上,且,将矩形CDEF以每秒1个单位长度的速度沿射线CB方向匀速运动,当点C与点B重合时停止运动,设运动时间为t秒,矩形CDEF与△ABC重叠部分的面积为S,则反映S与t的函数关系的图象为( )
A.B.
C.D.
【答案】C
【解析】
证明△DEF≌△BFE(AAS),则DE=FB=CF=BC=4;分0≤t≤4、4<t≤8两种情况,分别求出函数表达式,即可求解.
解:如图1,连接DF,
∵,即tanB=tan∠EDF,
∴∠B=∠EDF,而∠DEF=∠EFB=90°,EF=EF,
∴△DEF≌△BFE(AAS),
∴DE=FB=CF=BC=4,即点F是BC的中点,
EF=FBtanB=4×=3,
故矩形DCFE的面积为3×4=12;
当0≤t≤4时,如图2,
设直线AB交D′C′F′E′于点H,
则EE′=t,HE′=EE′tan∠E′EH=EE′tanB=t,
S=S矩形D′C′F′E′S△E′EH=12×t×
t=12
,
该函数为开口向下的抛物线,当t=4时,S=6;
当4<t≤8时,
同理可得:S=,
该函数为开口向上的抛物线;
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且ABC位于点C的异侧,并表示出点A1的坐标.
(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
(3)在(2)的条件下求出点B经过的路径长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中国班列”开通后,我国与欧洲各国经贸往来日益频繁.某欧洲列国客商准备在湖北采购一批特色商品,经调查,用16000元采购A型商品的件数是7500元采购B型商品的件数的2倍.一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B商品的进价分别为多少元
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A 型商品的件数不大于B型的件数且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,求该客商售完所有商品后获得的最大收益.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座楼亭前的台阶上的点A处测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知点A的高度AB为3 m,台阶AC的坡度为1∶,且B,C,E三点在同一条直线上,那么这棵树DE的高度为( )
A. 6 m B. 7 m C. 8 m D. 9 m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4
,cos∠ACH=
.
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使三角形PAC是等腰三角形?若存在,请求出P点坐标;不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD对角线交于点E,△ABD的外接圆⊙O交AC于点F.若FB=FC.
(1)证明:=FEFA;
(2)证明:BC是⊙O的切线;
(3)若EF=2,求出四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程2x2﹣3x﹣6=0有两个实数根a,b,直线经过点A(a+b,0)和点B(0,ab),则直线l的函数表达式为( )
A.y=2x﹣3B.y=2x+3C.y=﹣2x+3D.y=﹣2x﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与
轴交于点
,与
轴交于点
,抛物线
过点
.
(1)求出抛物线解析式的一般式;
(2)抛物线上的动点在一次函数的图象下方,求
面积的最大值,并求出此时点
的坐标;
(3)若点为
轴上任意一点,在(2)的结论下,求
的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数(x>0)的图象经过点A(4,2),过A作AC⊥y轴于点C.点B为反比例函数图象上的一动点,过点B作BD⊥x轴于点D,连接AD.直线BC与x轴的负半轴交于点E.
(1)若BD=3OC,求△BDE的面积;
(2)是否存在点B,使得四边形ACED为平行四边形?若存在,请求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com