【题目】如图,某农场老板准备建造一个矩形羊圈,他打算让矩形羊圈的一面完全靠着墙,墙可利用的长度为,另外三面用长度为的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分),设矩形羊圈的面积为,垂直于墙的一边长为.
填空:与的函数关系式________,是的________函数,的取值范围是________;
若要使矩形羊圈的面积为,求的值.
【答案】(1);二次;;(2)15
【解析】
(1)设所围矩形ABCD的宽AB为x米,则宽AD为(50-2x)米,根据矩形面积的计算方法列出方程,再根据MN可利用的长度为25m,列出不等式组,求出x的取值范围;
(2)根据(1)求出的y与x的函数关系式,得出x(50-2x)=300,求出x的值,再根据x的取值范围,即可得出答案.
(1)∵AB为xm,
∴AD=(50-2x)m,
∴y与x的函数关系式是:y=x(50-2x)=-2x2+50x,
故y是x的二次函数,
根据题意得:,
解得:≤x<25,
故答案为:y=-2x2+50x,二次,≤x<25;
(2)根据题意得:,
整理得:.
解得:,(不合题意,舍去),
则的值是.
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的有( )
①如果∠A+∠B-∠C=0,那么△ABC是直角三角形; ②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形; ③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是(n>2),则△ABC是直角三角形;
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-3,2),B(-4,-3),C(-1,-1)。
(1)写出△ABC关于x轴对称的△A1B1C1 的各顶点坐标;
(2)画出△ABC关于y轴对称的△A2B2C2;
(3)求△A2B2C2的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乘法公式的探究与应用:
(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是 (写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是 ,宽是 ,面积是 (写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式 (用式子表达)
(4)运用你所得到的公式计算:10.3×9.7.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判断△ABC是直角三角形的是( )
A.∠A:∠B:∠C=1:1:2B.a:b:c=3:4:5
C.∠A:∠B:∠C=3:4:5D.a:b:c=1:2:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,动点、分别以、的速度从点、同时出发,点从点向点移动.
若点从点移动到点停止,点随点的停止而停止移动,点、分别从点、同时出发,问经过多长时间、两点之间的距离是?
若点沿着移动,点、分别从点、同时出发,点从点移动到点停止时,点随点的停止而停止移动,试探求经过多长时间的面积为?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,是直线两侧的点,以为圆心,长为半径画弧交于,两点,又分别以,为圆心,大于的长为半径画弧,两弧交于点D,连接,,下列结论不一定正确的是( )
A.B.点,关于直线对称
C.点,关于直线对称D.平分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)如图①,在四边形ABCD中,∠A=∠C=90°,AD=CD,点E、F分别在边AB、BC上,ED=FD,证明:∠ADE=∠CDF.
(拓展)如图②,在菱形ABCD中,∠A=120°,点E、F分别在边AB、BC上,ED=FD.若∠EDF=30°,求∠CDF的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com