【题目】已知线段AB,只用圆规找AB的中点P.
作法:
② 以A为圆心,AB长为半径作圆;
②以B为圆心,AB长为半径在圆上连续截取,记截点为B1 , B2 , B3 , B4 , B5;
③ 以B3为圆心,BB3长为半径画弧;以B为圆心,AB长为半径画弧,与前弧交于点C;
④以C为圆心,CB长为半径画弧交线段AB于点P.
结论:点P就是所求作的线段AB的中点.
(1)配合图形,理解作法,根据作图过程给予证明:点P是线段AB的中点.
(2)已知⊙O,请只用圆规把圆周四等分.(保留作图痕迹,不要求写作法)
【答案】
(1)解:连结B3A,B3C,CB,CP
,易知B3,A,B共线,记AB=r,由作图过程可知B3B=B3C=2r,CP=CB=r,又∵∠CBP公共,∴△B3CB∽△CBP,∴ ,即 ,∴BP= r,即P为AB中点;
(2)解:作法:①以已知圆半径为半径在圆上连续截取,得截点A、B、C、D、E、F;
②分别以A、D为圆心,AC长为半径,作弧,交于点M;
③以A为圆心,AM为半径,在圆上连续截取,得截点A1、D1、A2.
结论:A、A1、D、A2即圆周四等分点.
【解析】 (1)连结B3A,B3C,CB,CP,易知B3,A,B三点共线,记AB=r,由作图过程可知B3B=B3C=2r,CP=CB=r,然后判断出△B3CB∽△CBP,然后根据相似三角形对应边成比例就能得到BP=r , 进而可得出结论;
(2)以已知圆半径为半径在圆上连续截取,得截点A、B、C、D、E、F;分别以A、D为圆心,AC长为半径,作弧,交于点M;以A为圆心,AM为半径,在圆上连续截取,得截点A1、D1、A2从而可得出结论.
【考点精析】解答此题的关键在于理解圆心角、弧、弦的关系的相关知识,掌握在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将ABCD沿CE折叠,使点D落在BC边上的F处,点E在AD上.
(1)求证:四边形ABFE为平行四边形;
(2)若AB=4,BC=6,求四边形ABFE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,AD交⊙O于点E,∠CAB=30°
(1)如图①,求∠DAC的大小;
(2)如图②,若⊙O的半径为4,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.
(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(0,a)、B(b, 0),且a、b满足: ,点D为x正半轴上一动点
(1)求A、B两点的坐标
(2)如图,∠ADO的平分线交y轴于点C,点 F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°, 判断线段AH、FD、AD三者的数量关系,并予以证明
(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,于点,点在边上,且,连接、、.若,求的度数.
证明:∵
∴(____________________________)
在和中,
∴(____________________________)
∴______________(____________________________)
∵在中,,
∴____________________
∵,
∴________________
∴( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,,,.点从点出发,以的速度沿向点运动,设点的运动时间为.
(1)________;(用含的代数式表示)
(2)如图1,当为何值时,?并说明理由;
(3)如图2,当点从点开始运动,同时,点从点出发,以的速度沿向点运动,当运动到点或点运动到点时运动停止.是否存在这样的值,使得与全等?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com