精英家教网 > 初中数学 > 题目详情

【题目】等腰直角三角形 ABC 中,BAC 90° AB AC 6 DE 是线段 BC 上的动点,且 DAE 45°

1)如图 1,请直接写出 BDDEEC 满足的关系式为

2如图 1 CE 3 ,请求出 ADE 的面积(写出过程);

如图 2 EAC 30° ,请求出 CE 的长度(写出过程);

3 如图 3DE 运动到了线段的延长线上,且满足 DAE 135°,CE=8,直接写出 BD的长为

【答案】1;(2)①15;②;(39

【解析】

1)将绕点A顺时针旋转,得到,再根据旋转的性质证明,再证明,得出,最后利用勾股定理求解即可;

2)①根据勾股定理可计算BC的值,再利用三角形的面积公式得出BC边上的高的值,再利用(1)中的结论得出DE的值,即可计算ADE 的面积;②作AE的延长线于点H,证明,利用相似三角形的性质求解即可;

3)根据已知条件可证明,得出,利用相似三角形的性质求解即可,

解:(1)结论:

如图,将绕点A顺时针旋转,得到

由旋转的性质可得出:

2)①如图,作

由勾股定理可得出:

②如图,作AE的延长线于点H

由题意可得出:

3)如图3:∵

DAE 135°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-x2+2x+3.

(1)求函数图像的顶点坐标,并画出这个函数的图像;

(2)根据图像,直接写出:

①当函数值y为正数时,自变量x的取值范围;

②当-2<x<2时,函数值y的取值范围;

③若经过点(0,k)且与x轴平行的直线l与y=-x2+2x+3的图像有公共点,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知动点P在边长为1的正方形ABCD的内部,点P到边AD、AB的距离分别为m、n.

(1)A为原点,以边AB所在直线为x轴,建立平面直角坐标系,如图①所示,当点P在对角线AC上,且m=时,求点P的坐标;

(2)如图②,当m、n满足什么条件时,点PDAB的内部?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,广场上一个立体雕塑由两部分组成,底座是一个正方体,正上方是一个球体,且正方体的高度和球的高度相等.当阳光与地面的夹角成60°时,整个雕塑在地面上的影子AB长2米,求这个雕塑的高度.(结果精确到百分位,参考数据:≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C

(1)如图1,当ABCB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.

(2)若EAC的中点,PA'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程左右两边同时加上4的是(  )

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?

(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC△A1B1C1是位似图形.在网格上建立平面直角坐标系,使得点A的坐标为(1,﹣6).

(1)在图上标出点,△ABC△A1B1C1的位似中心P.并写出点P的坐标为   

(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2△ABC位似,且位似比为1:2,并写出点C2的坐标为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(m,6),B(n,1)在反比例函数y=的图象上,ADx轴于点D,BCx轴于点C,点ECD上,CD=5,ABE的面积为10,则点E的坐标是(  )

A. (3,0) B. (4,0) C. (5,0) D. (6,0)

查看答案和解析>>

同步练习册答案