【题目】如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④APAD=CQCB.其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
【答案】B
【解析】
①错误,假设成立,推出矛盾即可;
②正确.想办法证明∠GPD=∠GDP即可;
③正确.想办法证明PC=PQ=PA即可;
④正确.证明△APF∽△ABD,可得APAD=AFAB,证明△ACF∽△ABC,可得AC2=AFAB,证明△CAQ∽△CBA,可得AC2=CQCB,由此即可解决问题;
解:①错误,假设∠BAD=∠ABC,则弧BD=弧AC,
∵弧AC=弧CD,
∴弧BD=弧AC=弧CD,显然不可能,故①错误.
②正确.连接OD.
∵GD是切线,
∴DG⊥OD,
∴∠GDP+∠ADO=90°,
∵OA=OD,
∴∠ADO=∠OAD,
∵∠APF+∠OAD=90°,∠GPD=∠APF,
∴∠GPD=∠GDP,
∴GD=GP,故②正确.
③正确.∵AB⊥CE,
∴弧AE=弧AC,
∵弧AC=弧CD,
∴弧CD=弧AE,
∴∠CAD=∠ACE,
∴PC=PA,
∵AB是直径,
∴∠ACQ=90°,
∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,
∴∠PCQ=∠PQC,
∴PC=PQ=PA,
∵∠ACQ=90°,
∴点P是△ACQ的外心.故③正确.
④正确.连接BD.
∵∠AFP=∠ADB=90°,∠PAF=∠BAD,
∴△APF∽△ABD,
∴=,
∴APAD=AFAB,
∵∠CAF=∠BAC,∠AFC=∠ACB=90°,
∴△ACF∽△ABC,
可得AC2=AFAB,
∵∠ACQ=∠ACB,∠CAQ=∠ABC,
∴△CAQ∽△CBA,可得AC2=CQCB,
∴APAD=CQCB.故④正确,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市计划购进一批甲、乙两种玩具,已知4件甲种玩具的进价与2件乙种玩具的进价的和为230元,2件甲种玩具的进价与3件乙种玩具的进价的和为185元.
(1)求每件甲种、乙种玩具的进价分别是多少元;
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进()件甲种玩具需要花费元,请你直接写出与的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)点B关于x轴的对称点B2的坐标是 ;
(4)△ABC的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C点坐标;
(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;
(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值 (不需要解答过程或说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知ABCD是一个以AD为直径的圆内接四边形,分别延长AB和DC,它们相交于P,若∠APD=60°,AB=5,PC=4,则⊙O的面积为( )
A. 25π B. 16π C. 15π D. 13π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com