【题目】在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为t秒,解答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?
(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.
【答案】(1)t=1秒或4秒;(2)t=0秒或(﹣15+)秒.
【解析】
(1)由题意可知PA=t,BQ=2t,从而得到PB=5﹣t,BQ=2t,然后根据△PQB的面积=4cm2列方程求解即可;
(2)当t=0时,点P与点A重合时,点B与点Q重合,此时圆Q与PD相切;当⊙Q正好与四边形DPQC的DC边相切时,由圆的性质可知QC=QP,然后依据勾股定理列方程求解即可;
解:(1)∵当运动时间为t秒时,PA=t,BQ=2t,
∴PB=5﹣t,BQ=2t.
∵△PBQ的面积等于4cm2,
∴PBBQ=(5﹣t)2t.
∴(5﹣t)2t=4.
解得:t1=1,t2=4.
答:当t为1秒或4秒时,△PBQ的面积等于4cm2;
(2)由题意可知圆Q与PQ、CQ不相切.下面分两种情况讨论:
(Ⅰ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.
∵∠DAB=90°,
∴∠DPQ=90°.
∴DP⊥PQ.
∴DP为圆Q的切线.
(Ⅱ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.
由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.
在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.
解得:t1=﹣15+,t2=﹣15﹣(舍去).
综上所述可知当t=0秒或t=(﹣15+)秒时,⊙Q与四边形DPQC的一边相切.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且面积为10.
(1)求点C的坐标及直线BC的解析式;
(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
(3)如图2,若M为线段BC上一点,且满足,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(0,6),点B(4,3),P是x轴上的一个动点.作OQ⊥AP,垂足为Q,则点Q到直线AB的距离的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O经过四边形ABCD的B、D两点,并与四条边分别交于点E、F、G、H,且.
(1)如图①,连接BD,若BD是⊙O的直径,求证:∠A=∠C;
(2)如图②,若的度数为θ,∠A=α,∠C=β,请直接写出θ、α和β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.
(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:
销售单价(元) | x(x>30) |
销售量y(个) |
|
销售计算器获得利润w(元) |
|
(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若=2,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=x2﹣2x+c的部分图象如图1所示:
(1)确定c的取值范围;
(2)若抛物线经过点(0,﹣1),试确定抛物线y1=x2﹣2x+c的解析式;
(3)若反比例函数y2=的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象写出当y1>y2时,对应自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com