精英家教网 > 初中数学 > 题目详情
14.一个角的余角比它的补角的$\frac{1}{3}$大10°,则这个角等于(  )
A.20°B.30°C.60°D.70°

分析 设这个角的度数是x°,根据这个角的余角和补角的关系列出方程,然后求解即可.

解答 解:设这个角的度数是x°,根据题意,
得(90°-x)=$\frac{1}{3}$(180°-x)+10°,
解这个方程得x=30,
即:这个角的度数是30°.
故选:B.

点评 此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.若2<x<6,化简|x-2|-|x-6|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:$\frac{3}{x+1}+\frac{1}{x}=\frac{1}{x(x+1)}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某中学为了了解全校的耗电情况抽查了10天中全校每天的耗电量,数据如下表:
度数9093102113114120
天数112312
(1)求出上表中数据的众数、中位数和平均数;
(2)根据(1)中获得的数据,估计该校一个月的耗电量(按30天计算).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.分解因式:3x2y-12xy2+12y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知|a-1|+(b+a+1)2=0,求5a3b6-[-2a6b3+(5a3b6-2a6b3)]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,O为坐标原点,坐标轴上两点A、C的坐标分别为(0,8),(32,0),AD∥OC,DC=8$\sqrt{2}$,点P从A出发,以每秒1个单位的速度沿着AD向D点运动;点Q从C点同时出发,以每秒3个单位的速度沿着CO向左运动,当点P到达D点时,点P、Q同时停止运动,设点P的运动时间为t秒.
(1)图中线段AD的长度为24,当t=6时,四边形PQCD是平行四边形
(2)从运动开始,是否存在某个t值,使得以P、D、O、Q为顶点的四边形是平行四边形?若存在,求出t值;若不存在,说明理由.
(3)从运动开始,是否存在某个t值,使得四边形AOQP恰好为正方形?若存在,求出t值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.等腰三角形的底边长为4,面积等于4,则其顶角的度数等于90°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.二次三项式x2+6x+3的最小值为-6.

查看答案和解析>>

同步练习册答案