精英家教网 > 初中数学 > 题目详情

【题目】某商品的进价为每件40元,售价每件不低于60元且每件不高于80.当售价为每件60元是,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2.设每件商品的售价为元(为正整数),每个月的销售利润为.

1)求的函数关系式并直接写出自变量的取值范围;

2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

3)当每件商品定价为多少元使得每个月的利润恰为2250元?

【答案】1,(为整数);(2)每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元;(3)每件商品的售价为65元时,每个月的利润恰为2250元.

【解析】

1)由于售价为60时,每个月卖100件,售价上涨影响销量,因此根据60≤x≤80列式求解;
2)由(1)中求得的函数解析式来根据自变量x的范围求利润的最大值;
3)在60≤x≤80,令y=2250,求得定价x的值.

1;(为整数)

2

,∴当时,有最大值2450.

∴每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.

3)当元时,

解得:;其中,不符合题意,舍去.

因此当每件商品的售价为65元时,每个月的利润恰为2250元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题探究

请在图的正方形ABCD的对角线BD上作一点P,使最小;

如图,点P为矩形ABCD的对角线BD上一动点,,点EBC边的中点,请作一点P,使最小,并求这个最小值;

问题解决

如图,李师傅有一块边长为1000米的菱形采摘园ABCD,米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是半圆的直径,射线于点,点是射线上一动点,连接,将沿翻折,点落在点处,过点作直线.

1)当时,求证:是半圆的切线;

2)点在射线上继续向上运动,直线是否会再次与半圆相切,若相切,求出的度数;若不相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,RtABC的三个顶点分别是A(﹣32),B04),C02).

1)平移△ABC,若点A的对应点A1的坐标为(0,﹣4),画出平移后对应的△A1B1C1,并写出B1C1的坐标;

2)将△ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的△A2B2C2,并写出B2C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为,与轴的一个交点在之间,其部分图象如图所示,则下列结论:(1:(2;(3为任意实数);(45)点是该抛物线上的点,且,其中正确结论的个数是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,ABC分别表示三位家长,他们的孩子分别对应的是abc

1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是Aa的概率是多少(直接写出答案)

2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.

(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是   ,衍生直线的解析式是   

(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;

(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,MOA的中点,弦CDAB于点M,过点DDECACA的延长线于点E

(1)连接AD,则∠OAD   °;

(2)求证:DE⊙O相切;

(3)F上,∠CDF45°,DFAB于点N.若DE3,求FN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD12mCF1.8mDH3.8m.请你求出松树的高.

查看答案和解析>>

同步练习册答案