精英家教网 > 初中数学 > 题目详情

【题目】小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD12mCF1.8mDH3.8m.请你求出松树的高.

【答案】这棵古松的高约为10.2米.

【解析】

根据反射定律可以推出∠ACB=ECF,∠ADB=DGH,所以可得△BAC∽△FEC、△ADB∽△GDH,再根据相似三角形的性质解答.

解:根据反射定律可以推出∠ACB∠ECF∠ADB∠GDH

∵AB⊥BCEF⊥BCGH⊥BC

∴△BAC∽△FEC△ADB∽△GDF

ABxBCy

解得

答;这棵古松的高约为10.2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别是A(-1,0)B4,5),抛物线+b+c经过AB两点

1)求抛物线的解析式;

2)点M是线段AB上的一点(不与AB重合),过M轴的垂线交抛物线与点N,求线段MN的最大值,并求出点MN的坐标;

3)在(2)的条件下,在抛物线上是否存在点P,使得⊿PMN是以MN为直角边的直角三角形?若存在求出点P的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)

(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是

(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;

(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为直角三角形,∠C=90°,BC=2cm,A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2xs之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+cx轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.

(1)求抛物线的解析式和直线AC的解析式;

(2)请在y轴上找一点M,使BDM的周长最小,求出点M的坐标;

(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探索发现)

如图①,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为_____________

(拓展应用)

如图②,在中,边上的高,矩形的顶点分别在边上,顶点在边上,则矩形面积的最大值为_________.(用含的代数式表示)

(灵活应用)

如图③,有一块缺角矩形,小明从中剪出了一个面积最大的矩形(为所剪出矩形的内角),求该矩形的面积.

(实际应用)

如图④,现有一块四边形的木板余料,经测量,且,木匠徐师傅从这块余料中裁出了顶点在边上且面积最大的矩形,求该矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在开业前,所进三种货物:上衣、裤子和鞋子的数量共480份,这三种货物进货的数量比例如图(1)所示.商店安排6人只销售上衣,4人只销售裤子,2人只销售鞋子,用了5天的时间销售货物的情况如图(2)及表格所示.

1)求所进三种货物中上衣有多少件?

2)直接在图中把图(2)补充完整;

3)表格中的=    (直接填空)

4)若销售人员不变,并以同样的销售速度销售,则上衣、裤子和鞋子中最先销售完的货物为    (直接填空)

货物

上衣()

裤子()

鞋子()

5天的销售总额

150

a

30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线表示固定支架,垂直水平桌面,点为旋转点,可以旋转,当绕点逆时针旋转时,投影探头始终垂直于水平桌面,经测量:(结果精确到)

(1)如图2所示,.

①填空:

②求投影探头的端点到桌面的距离;

(2)如图3所示,将(1)中的向下旋转,当投影探头的端点到桌面的距离为时,求的大小.(参考数据span>)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克至60千克之间(含20千克和60千克)时,每千克批发5元;若超过60千克是,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.

1)根据题意,填写如表:

蔬菜的批发量(千克)

...

25

60

75

90

...

所付的金额(元)

...

125

300

...

2)经调查,该蔬菜经销商销售该种蔬菜的日销售量(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出之间的函数关系式;

3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案