精英家教网 > 初中数学 > 题目详情
在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;
(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为
3
5
,求添加的白球个数x.
考点:列表法与树状图法,概率公式
专题:计算题
分析:(1)列表得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率;
(2)根据概率公式列出关于x的方程,求出方程的解即可得到结果.
解答:解:(1)列表如下:
 
--- (红,白) (红,白)
(白,红) --- (红,红)
(白,红) (红,红) ---
所有等可能的情况有6种,其中恰好为两个红球的情况有2种,
则P(两个红球)=
1
3

(2)根据题意得:
x+1
x+3
=
3
5

解得:x=2,
经检验是分式方程的解,
则添加白球的个数x=2.
点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

收割机前面的拨禾轮是正五边形,它绕着正五边形的中心在不停地旋转.正五边形绕着它的中心只要旋转多少度就能和原来的图形重合?(  )
A、45B、60C、72D、75

查看答案和解析>>

科目:初中数学 来源: 题型:

某次海军舰艇演习中,甲、乙两舰艇同时从A、B两个港口出发,均沿直线匀速驶向演习目标地海岛C,两舰艇都到达C岛后演习第一阶段结束.已知B港位于A港、C岛之间,且A、B、C在一条直线上.设甲、乙两舰艇行驶x(h)后,与B港的距离分别为y1和y2(km),y1、y2与x的函数关系如图所示.
(1)求A港与C岛之间的距离;
(2)分别求出甲、乙两舰艇的航速及图中点M的坐标;
(3)若甲、乙两舰艇之间的距离不超过20km时就属于最佳通讯距离,试求出两舰艇在演习第一阶段处于最佳通讯距离时的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABFC为菱形,点 D、A、E在直线l上,∠BDA=∠BAC=∠CEA.
(1)求证:△ABD≌△CAE;
(2)若∠FBA=60°,连接DF、EF,判断△DEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD中,BC=8,对角线BD=10,求tan∠ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)|-2|-(1+
3
0+
4

(2)(m-
1
m
)÷
m2-2m+1
m

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A的坐标是(0,2),点B是x轴正半轴上的点,过点B作直线l垂直于x轴,点C为线段OB上的动点,连接AC,过点C作CD⊥AC交直线l于点D,将△BCD沿CD翻折至△ECD的位置,连接AE,设点B的坐标是(m,0),点C的坐标是(n,0)
(1)用含m,n的代数式表示点D的坐标;
(2)当点A、E、D三点在同一直线上时,求m,n之间的数量关系;
(3)若在点C的运动过程中有唯一位置使得AE∥x轴,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一个不透明的盒子里,装有三个分别标有数字-1,2,3,的小球,它们的形状、大小、质地等完全相同.
小强先从盒子里随机取出一个小球,记下数字为x;不放回,再由小华随机取出一个小球,记下数字为y.
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求满足x<y的(x,y)出现的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

方程
3
x-1
+
x+2
1-x
=1解的情况是
 

查看答案和解析>>

同步练习册答案