【题目】如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),
(1)求一次函数y=kx+b的函数关系式
(2)求四边形AOCD的面积;
(3)是否存在y轴上的点P,使得以BD为底的△PBD等腰三角形?若存在求出点P的坐标;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】如下图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(3,0),
(1)在图中作出线段AB以二四象限的角平分线为对称轴的对称线段CD,并直接写出四边形ABDC的面积为 ;
(2)若点C为格点(横纵坐标均为整数),且AB⊥OC,且AB=OC,作出线段OC;并写出C点坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠BAC=∠BFC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察与发现:小明将三角形纸片沿过点的直线折叠,使得落在边上,折痕为,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点和点重合,折痕为,展平纸片后得到(如图②).小明认为是等腰三角形,你同意吗?请说明理由.
(2)实践与运用:将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为 (如图③);再沿过点的直线折叠,使点落在上的点处,折痕为 (如图④);再展平纸片(如图⑤).求图⑤中的大小。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=﹣x+2经过点A,C
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点.
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.
(1)填空:∠CAM=__________度;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】本学期学习了分式方程的解法,下面是晶晶同学的解题过程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移项,得: ……………………… 第③步
合并同类项,得: ……………………… 第④步
系数化1,得: …………………………第⑤步
检验:当时,
所以原方程的解是. ………………………第⑥步
上述晶晶的解题过程从第_____步开始出现错误,错误的原因是_________________.请你帮晶晶改正错误,写出完整的解题过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com