精英家教网 > 初中数学 > 题目详情

【题目】某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).

1)请分别计算这50名学生在这一天课外阅读所用时间的众数、中位数和平均数;

2)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0小时以上(含1.0小时)的有多少人?

【答案】1)众数是,中位数是,平均数是;(21400

【解析】

1)数据里面最多的数是众数,处于中间位置的数是中位数,总时间除以总人数是平均数.

2)先求出调查时1.0小时以上(含1.0小时)所占的百分比,然后估算全校的人数.

1)众数是1.0

从小到大排列出在中间位置应该是第2526两个数所以是1.0

众数是,中位数是,平均数是

(人).

估计全校学生中在这一天课外阅读所用时间在1.0小时以上(含1.0小时)的有1400人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,PAD的中点,连BP,过ABP的垂线,垂足为F,交BDE,交CDG

1)若矩形ABCD是正方形,如图1

求证:AGBP

的值为   

2)类比:如图2,在矩形ABCD中,若2AB3AD,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCDCEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.

(1)你同意下列说法吗?请说明理由.

①搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.

②如果将摸出的第一个球放回搅匀后再摸出第二个球,两次摸球就可能出现3种结果,即都是红球都是白球一红一白”.这三个事件发生的概率相等.

(2)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+ca≠0)的图象与x轴的相交情况,关于下列结论:

①方程ax2+bx0的两个根为x10x2=﹣4;②b4a0;③9a+3b+c0;其中正确的结论有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的两个函数,任取自变量x的一个值,x<0,它们对应的函数值互为相反数;x0,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x1,它们的相关函数为y= .

(1)已知点A(5,8)在一次函数y=ax3的相关函数的图象上,求a的值;

(2)已知二次函数y=x+4x .

①当点B(m, )在这个函数的相关函数的图象上时,求m的值;

②当3x3,求函数y=x+4x的相关函数的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+3x轴交于点C,与y轴交于点B,抛物线yax2+x+c经过BC两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?

(3)(2)的结论下,过点Ey轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以PQAM为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y3x2+bx+c与直线y=﹣1只有一个公共点M,与平行于x轴的直线l交此抛物线AB两点若AB=4,则点M到直线l的距离为(

A.11B.12C.D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】花园小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高4米的小区商场,商场以上是居民住房.在该楼的前面16米处要盖一栋高18米的办公楼.当冬季正午的阳光与水平线的夹角为时,问:

1)商场以上的居民住房采光是否有影响,为什么?

2)若要使商场采光不受影响,两楼应相距多少 米?(结果保留一位小数)

(参考数据:

查看答案和解析>>

同步练习册答案