【题目】如图,△ABC是等腰直角三角形,点P在斜边AB上,将△ABP绕着点A逆时针旋转90°后,点P到达点Q.
(1)在原图上画出旋转后的图形.
(2)若AB=2,PC=3PB,求PQ的长.
【答案】(1)如图,△ACQ为所作;见解析;(2)PQ=.
【解析】
(1)作QC⊥BC且CQ=BP,则△ACQ满足条件;
(2)先利用等腰直角三角形的性质得到∠B=∠ACB=45°,AB=AC,BC=AB=×2=4,则PC=3,PB=1,再根据旋转的性质得CQ=BP=1,∠ACQ=∠B=45°,然后利用勾股定理计算PQ.
(1)如图,△ACQ为所作;
(2)∵△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,AB=AC,BC=AB=×2=4,
∵PC=3PB,
∴PC=3,PB=1,
∵△ABP绕着点A逆时针旋转90°后,点P到达点Q.
∴CQ=BP=1,∠ACQ=∠B=45°,
∴∠QCB=∠QCA+∠ACB=45°+45°=90°,
在Rt△PCQ中,PQ=.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=α,将△ABC绕点C顺时针方向旋转到△A′B′C的位置,使AA′∥BC,设旋转角为β,则α,β满足关系( )
A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.
(1)求k的值:
(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1:y=a1(x+1)2+1与y2:y=a2(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论,正确的是( )
A.>B.当=时,x=1
C.当>时,0≤x<1D.3AB=2AC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某村计划在新农村改造过程中,拟筹资金2000元,计划在一块上、下底分别为10米、20米的梯形空地上种植花草(如图所示,),村委会想在地带与地带种植单价为10元的太阳花,当地带种满花后,已经花了500元,请你计算一下,若继续在地带种植同样的太阳花,资金是否够用?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料:思考的同学小斌在解决连比等式问题:“已知正数,,满足,求的值”时,采用了引入参数法,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出,,之间的关系,从而解决问题.过程如下:
解;设,则有:
,,,
将以上三个等式相加,得.
,,都为正数,
,即,.
.
仔细阅读上述材料,解决下面的问题:
(1)若正数,,满足,求的值;
(2)已知,,,互不相等,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣2x﹣3与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,点D是该抛物线的顶点,连接AD,BD.
(1)直接写出点C、D的坐标;
(2)求△ABD的面积;
(3)点P是抛物线上的一动点,若△ABP的面积是△ABD面积的,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com