精英家教网 > 初中数学 > 题目详情
4.数学兴趣小组开展以下折纸活动:
(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;
(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.
观察,探究可以得到∠ABM的度数是(  )
A.25°B.30°C.36°D.45°

分析 连接AN,根据折叠的性质得到△ABN为等边三角形,可得∠ABN=60°,于是得到∠ABM=∠NBM=30°.

解答 解:连接AN,
∵EF垂直平分AB,
∴AN=BN,
由折叠知AB=BN,
∴AN=AB=BN,
∴△ABN为等边三角形,
∴∠ABN=60°,
∴∠ABM=∠NBM=30°.
故选B.

点评 本题考查了翻折变换,等边三角形的性质,翻折前后对应角相等;对应边相等;注意特殊角及三角函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④⑤.(填序号即可)
①AF=AG=$\frac{1}{2}$AB;②MD=ME;③四边形AFMG是菱形;④整个图形是轴对称图形;⑤MD⊥ME.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系和位置关系?请给出证明过程;

●类比探索:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在平面直角坐标系中,等边三角形OAB的边长是2$\sqrt{3}$,且OB边落在x轴的正半轴上,点A落在第一象限.将△OAB沿直线y=kx+b折叠,使点A落在x轴上,设点C是点A落在x轴上的对应点. 
(1)如果点A恰好落在点C(0,0),求b的值;
(2)设点C的横坐标为m,求b与m之间的函数关系式;
(3)直接写出当b=$\frac{1}{2}$时,点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12. 如图,有一直角三角形纸片ACB,∠A=30°,∠ACB=90°,BC=2,点D是AC边上一动点.过点D沿直线DE方向折叠三角形纸片,使点A落在射线AB上的点F处,当以点F、B、C为顶点的三角形为等腰三角形时,AD的长为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为105°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:|2-$\sqrt{2}$|-$\sqrt{9}$+(-1)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各组中,不是同类项的是(  )
A.52与25B.-ab与baC.0.2a2b与-$\frac{1}{5}$a2bD.a2b3与-a3b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图是某班同学对新闻、动画、娱乐、戏曲五类最喜爱电视节目的条形统计图,根据条形统计图可得出该班最喜爱娱乐节目的人数占全班人数的百分比是36%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,二次函数y=x2+bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒$\sqrt{2}$个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.
(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案