精英家教网 > 初中数学 > 题目详情

【题目】已知一次函数y=2x+b.

(1)它的图像与两坐标轴所围成的图形的面积等于4,b的值;

(2)它的图像经过一次函数y=-2x+1y=x+4图像的交点,b的值.

【答案】1±4;(25

【解析】

1)分别求出一次函数y=2x+b与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b的值;

2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1y=x+4的交点坐标,然后代入y=2x+b求出b的值.

解:(1)令x=0代入y=2x+b

∴y=b

y=0代入y=2x+b

∴x=-

∵y=2x+b的图象与坐标轴所围成的图象的面积等于4

×|b|×|-|=4

∴b2=16

∴b=±4

2)联立

解得:

把(-13)代入y=2x+b

∴3=-2+b

∴b=5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是等边ABC内一点.将BOC绕点C按顺时针方向旋转60°ADC,连接OD.已知∠AOB=110°

1)求证:COD是等边三角形;

2)当α=150°时,试判断AOD的形状,并说明理由;

3)探究:当α为多少度时,AOD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC,∠C=90°ACBC,若DBC上一点,且到AB两点距离相等.

1)利用尺规,作出点D的位置(不写作法,保留作图痕迹);

2)连结AD,若AB=5AC=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 平面直角坐标系中,过点C2828)分别作x轴、y轴的垂线,垂足分别为BA,一次函数y=x+3的图像分别与x轴和CB交于点DE,点PDE中点,连接AP.

⑴ 求点D与点E的坐标; ⑵求证:△ADO≌△AEC;⑶ 求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,无论k取何实数,直线y=(k-1)x+4-5k总经过定点P,则点P与动点Q(5m-1,5m+1)的距离的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲.乙两种商品原来的单价分别为x.y元,则可列方程组为_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于两点,抛物线经过两点,与轴的另一个交点为,连接

(1)求抛物线的解析式及点的坐标;

(2) 在抛物线上,连接 ,当 时,求点的坐标;

(3)从点出发,沿线段运动,同时点从点出发,沿线段运动, 的运动速度都是每秒个单位长度,当点到达点时,同时停止运动,试问在坐标平面内是否存在点,使运动过程中的某一时刻,以为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1:y=kx+1,与x轴相交于点A,同时经过点B(2,3),另一条直线l2经过点B,且与x轴相交于点P(m,0).

(1)求l1的解析式;

(2)若S△APB=3,求P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂工人小王某月工作的部分信息如下:

信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;

信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于45.

生产产品件数与所用时间之间的关系见下表:

生产甲产品件数(件)

生产乙产品件数(件)

所用总时间(分)

10

10

500

15

20

900

信息三:按件计酬,每生产一件甲产品可得6元,每生产一件乙产品可得10.

根据以上信息,回答下列问题:

(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?

(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

查看答案和解析>>

同步练习册答案