20£®¼ÆË㣺
£¨1£©$\sqrt{8}$$+\sqrt{\frac{1}{3}}$$-2\sqrt{\frac{1}{2}}$£»
£¨2£©2$\sqrt{12}$¡Á$\frac{\sqrt{3}}{4}¡Â\sqrt{2}$£»
£¨3£©£¨2$\sqrt{3}+\sqrt{6}$£©£¨2$\sqrt{3}$-$\sqrt{6}$£©£»
£¨4£©£¨2$\sqrt{48}$-3$\sqrt{27}$£©$¡Â\sqrt{6}$
£¨5£©a$\sqrt{\frac{a}{b}}$¡Á$\sqrt{ab}$¡Á$\sqrt{\frac{1}{ab}}$£¨b£¾0£©£»
£¨6£©£¨$\sqrt{2}-\sqrt{3}$£©2£¨$\sqrt{2}+\sqrt{3}$£©2£®

·ÖÎö £¨1£©ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºóºÏ²¢¼´¿É£»
£¨2£©¸ù¾Ý¶þ´Î¸ùʽµÄ³Ë³ý·¨Ôò½øÐмÆË㣻
£¨3£©ÀûÓÃÆ½·½²î¹«Ê½¼ÆË㣻
£¨4£©ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºó°ÑÀ¨ºÅÄںϲ¢ºó½øÐжþ´Î¸ùʽµÄ³ý·¨ÔËË㣻
£¨5£©¸ù¾Ý¶þ´Î¸ùʽµÄ³Ë·¨·¨Ôò½øÐмÆË㣻
£¨6£©ÏÈÀûÓûýµÄ³Ë·½µÃµ½Ô­Ê½=[£¨$\sqrt{2}$-$\sqrt{3}$£©£¨$\sqrt{2}$+$\sqrt{3}$£©]2£¬È»ºóÀûÓÃÆ½·½²î¹«Ê½¼ÆË㣮

½â´ð ½â£º£¨1£©Ô­Ê½=2$\sqrt{2}$+$\frac{\sqrt{3}}{3}$-$\sqrt{2}$
=$\sqrt{2}$+$\frac{\sqrt{3}}{3}$£»
£¨2£©Ô­Ê½=2¡Á$\frac{1}{4}$¡Á$\sqrt{12¡Á3¡Á\frac{1}{2}}$
=$\frac{3\sqrt{2}}{2}$£»
£¨3£©Ô­Ê½=£¨2$\sqrt{3}$£©2-£¨$\sqrt{6}$£©2
=12-6
=6£»
£¨4£©Ô­Ê½=£¨8$\sqrt{3}$-9$\sqrt{3}$£©¡Â$\sqrt{6}$
=-$\sqrt{3}$¡Â$\sqrt{6}$
=-1¡Â$\sqrt{2}$
=-$\frac{\sqrt{2}}{2}$£»
£¨5£©Ô­Ê½=a$\sqrt{\frac{a}{b}•ab•\frac{1}{ab}}$
=$\frac{a\sqrt{ab}}{b}$£»
£¨6£©Ô­Ê½=[£¨$\sqrt{2}$-$\sqrt{3}$£©£¨$\sqrt{2}$+$\sqrt{3}$£©]2
=£¨2-3£©2
=1£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËË㣺ÏȰѶþ´Î¸ùʽ»¯Îª×î¼ò¶þ´Î¸ùʽ£¬È»ºó½øÐжþ´Î¸ùʽµÄ³Ë³ýÔËË㣬Ôٺϲ¢Í¬Àà¶þ´Î¸ùʽ£®ÔÚ¶þ´Î¸ùʽµÄ»ìºÏÔËËãÖУ¬ÈçÄܽáºÏÌâÄ¿ÌØµã£¬Áé»îÔËÓöþ´Î¸ùʽµÄÐÔÖÊ£¬Ñ¡ÔñÇ¡µ±µÄ½âÌâ;¾¶£¬ÍùÍùÄÜʰ빦±¶£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺tan30¡ãcos60¡ã+tan45¡ãcos30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®$\frac{1}{3}$µÄÏà·´ÊýÊÇ-$\frac{1}{3}$£¬$\frac{1}{3}$µÄµ¹ÊýÊÇ3£¬£¨$\frac{1}{3}$£©2=$\frac{1}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®»¯¼òÏÂÁи÷ʽ£º
£¨1£©$\frac{5-\sqrt{5}}{6-2\sqrt{5}}$£»
£¨2£©$\frac{\sqrt{6}+4\sqrt{3}+3\sqrt{2}}{£¨\sqrt{6}+\sqrt{3}£©£¨\sqrt{3}+\sqrt{2}£©}$£»
£¨3£©$\frac{\sqrt{5}+\sqrt{7}}{\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½âÏÂÁзÖʽ·½³Ì£º
£¨1£©$\frac{1}{x+1}$+$\frac{1}{2}$=$\frac{5}{6}$£»
£¨2£©$\frac{2}{x-3}$=$\frac{3}{x-2}$£»
£¨3£©$\frac{1}{{x}^{2}+5x-6}$=$\frac{1}{{x}^{2}+x+6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£nÃûѧÉú²Î¼ÓÊз¨ÂÉ֪ʶ¾ºÈü£¬ËûÃǵijɼ¨·Ö±ðΪa1£¬a2£¬¡­£¬an£¬ÕânÃûѧÉúµÄƽ¾ù³É¼¨Îª¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÓÃÅä·½·¨ËµÃ÷ÎÞÂÛxÈ¡ºÎÖµ£¬´úÊýʽ-4x2+8x-$\frac{9}{2}$µÄÖµÒ»¶¨Îª¸ºÊý£®²¢Çó³öËüµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª$\sqrt{5}$¡Ö2.236£¬Çó£¨5$\sqrt{\frac{1}{5}}$+$\frac{1}{2}$$\sqrt{80}$£©-£¨$\frac{5}{4}$$\sqrt{\frac{4}{5}}$-$\sqrt{45}$£©µÄ½üËÆÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èô£¨a+b£©2=12£¬£¨a-b£©2=8£¬ÄãÄÜÇó³öabµÄÖµÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸