精英家教网 > 初中数学 > 题目详情

【题目】如图,为等边三角形,相交于点于点,且,则的长为( )

A.7B.8C.9D.10

【答案】C

【解析】

由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.

解:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠ACD=60°;

又∵AE=CD,

在△ABE和△CAD中,

∴△ABE≌△CAD(SAS);

∴BE=AD,∠CAD=∠ABE;

∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;

∵BQ⊥AD,

∴∠AQB=90°,则∠PBQ=90°60°=30°

∵PQ=3,

∴在Rt△BPQ中,BP=2PQ=8;

又∵PE=1,

∴AD=BE=BP+PE=9.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB⊥BC,DC⊥BC,EBC上一点,使得AE⊥DE;

(1)求证:△ABE∽△ECD;

(2)AB=4,AE=BC=5,求CD的长;

(3)△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB O 的一条弦,C AB 的中点,过点 C 作直线垂直于OA 于点 D,交过点 B O 的切线于点 E

(1)求证:BECE

(2)若O 的半径长为 8AB12,求 BE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过点A60)的直线ykx3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.

1)求点B的坐标;

2)当△OPB是直角三角形时,求点P运动的时间;

3)当BP平分△OAB的面积时,直线BPy轴交于点D,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,M经过原点O(0,0),点A,0)与点B(0,﹣1),点D在劣弧OA上,连接BDx轴于点C,且∠COD=∠CBO

(1)请直接写出M的直径,并求证BD平分∠ABO

(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与M相切,求此时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市现在有两种用电收费方法:

分时电表

普通电表

峰时(8:00~21:00)

谷时(21:00到次日8:00)

电价0.55元/千瓦·时

电价0.35元/千瓦·时

电价0.52元/千瓦·时

小明家所在的小区用的电表都换成了分时电表.

解决问题:

(1)小明家庭某月用电总量为千瓦·时(为常数);谷时用电千瓦·时,峰时用电千瓦·时,分时计价时总价为元,普通计价时总价为元,求与用电量的函数关系式.

(2)小明家庭使用分时电表是不是一定比普通电表合算呢?

(3)下表是路皓家最近两个月用电的收据:

谷时用电(千瓦·时)

峰时用电(千瓦·时)

181

239

根据上表,请问用分时电表是否合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,是线段上靠近点的三等分点.

(1)若点轴上的一动点,连接,当的值最小时,求出点的坐标及的最小值;

(2)如图2,过点,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:相似三角形对应边上的中线之比等于相似比.

要求:①根据给出的△ABC及线段A'B′,A′(A′=A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;

②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

同步练习册答案