【题目】某市现在有两种用电收费方法:
分时电表 | 普通电表 | |
峰时(8:00~21:00) | 谷时(21:00到次日8:00) | |
电价0.55元/千瓦·时 | 电价0.35元/千瓦·时 | 电价0.52元/千瓦·时 |
小明家所在的小区用的电表都换成了分时电表.
解决问题:
(1)小明家庭某月用电总量为千瓦·时(为常数);谷时用电千瓦·时,峰时用电千瓦·时,分时计价时总价为元,普通计价时总价为元,求,与用电量的函数关系式.
(2)小明家庭使用分时电表是不是一定比普通电表合算呢?
(3)下表是路皓家最近两个月用电的收据:
谷时用电(千瓦·时) | 峰时用电(千瓦·时) |
181 | 239 |
根据上表,请问用分时电表是否合算?
【答案】(1)y1=0.35x+0.55(a-x),y2=0.52a;(2)当x>时,使用分时电表比普通电表合算;当x=时,两种电表费用相同;当x<时,使用普通电表比普通电表合算;(3)用分时电表更合算.
【解析】
(1)根据题意解答即可;
(2)根据题意列不等式解答即可;
(3)根据(1)的结论解答即可.
解:(1)根据题意得:y1=0.35x+0.55(a-x),y2=0.52a;
(2)小明家庭使用分时电表不一定比普通电表合算.
当y1<y2,即0.35x+0.55(a-x)<0.52a,解得x>,
即x>时,使用分时电表比普通电表合算;
当y1=y2,即0.35x+0.55(a-x)=0.52a,解得x=,
即x=时,两种电表费用相同;
当y1>y2,即0.35x+0.55(a-x)>0.52a,解得x<,
即x<时,使用普通电表比普通电表合算;
(3)用分时电表的费用为:0.35×181+0.55×239=194.8(元);
使用普通电表的费用为:0.52×(181+239)=218.4(元).
所以用分时电表更合算.
科目:初中数学 来源: 题型:
【题目】如图,△PAB内接于⊙O,ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD.
(1)求证:BC是⊙O的切线.
(2)若BC=2,∠PBD=60°,求与弦AP围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
(1)求证:CF=DF;
(2)连接OF,若AB=10,BC=6,求线段OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给定关于的二次函数 ,
学生甲:当时,抛物线与 轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;
学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;
请判断学生甲、乙的观点是否正确,并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形 ABCD 中,E 为直线 AB 上的动点(不与 A、B 重合),作射线 DE 并绕点 D 逆时针旋转 45°,交直线 BC 于点 F,连接 EF.
探究:当点 E 在边 AB 上,求证:EF=AE+CF.
应用:(1)当点 E 在边 AB 上,且 AD=2 时,求△BEF 的周长;
(2)当点 E 在 BA 延长线上时,判断 EF,AE,CF 三者的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com