【题目】图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图②形状拼成一个正方形.
(1)请用两种不同方法,求②中阴影部分的面积(不用化简)
方法1: ;方法2: ;
(2)观察图②,写出(m+n)2,(m﹣n)2,mn之间的等量关系 ;
(3)根据(2)题中的等量关系,解决如下问题:
①若a+b=7,ab=5,求(a﹣b)2的值;
②若2a+b=5,ab=2,求2a﹣b的值.
【答案】(1) (m+n)2﹣4mm,(m﹣n)2;(2) m2+2mn+n2﹣4mn=m2﹣2mn+n2=(m﹣n)2;(3) ①29; ②±3
【解析】
(1)利用已知图形结合边长为(m+n)的大正方形的面积减去长为m,宽为n的4个长方形面积以及边长为(m-n)的正方形的面积,分别求出答案;
(2)分别化简(1)中求得阴影部分的面积可得答案;
(3)①②利用(2)中关系式,将已知变形得出答案.
解:(1)方法1:(m+n)2﹣4mn,
方法2:(m﹣n)2;
故答案为:(m+n)2﹣4mn;(m﹣n)2;
(2)(m+n)2﹣4mn=(m﹣n)2
证明:左边=m2+2mn+n2﹣4mn
=m2﹣2mn+n2
=(m﹣n)2=右边;
(3)①(a﹣b)2=(a+b)2﹣4ab
=72﹣4×5
=49﹣20=29;
②(2a﹣b)2=(2a+b)2﹣8ab
=52﹣8×2
=25﹣16=9;
∴2a﹣b=±3;
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于,两点,与轴交于点,与轴交于点,已知,,点的坐标为.
求反比例函数的解析式;
求一次函数的解析式;
在轴上存在一点,使得与相似,请你求出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
(1)①频数分布表中a的值为;②若测试成绩不低于80分为优秀,则本次测试的优秀率是;③将频数分布直方图补充完整;
(2)第5组10名同学中,有4名男同学(用A,B,C,D表示),现将这4名同学分成两组(每组2人)进行对抗练习,求A与B两名男同学能分在同一组的概率.
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACB=∠ECD=90°,AC=BC,EC=DC,点D在AB边上.
(1)求证:△ACE≌△BCD.
(2)若AE=3,AD=2.求ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠C=90°,AC<BC,若D为BC上一点,且到A,B两点距离相等.
(1)利用尺规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若AB=5,AC=3,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 平面直角坐标系中,过点C(28,28)分别作x轴、y轴的垂线,垂足分别为B、A,一次函数y=x+3的图像分别与x轴和CB交于点D、E,点P 是DE中点,连接AP.
⑴ 求点D与点E的坐标; ⑵求证:△ADO≌△AEC;⑶ 求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1:y=kx+1,与x轴相交于点A,同时经过点B(2,3),另一条直线l2经过点B,且与x轴相交于点P(m,0).
(1)求l1的解析式;
(2)若S△APB=3,求P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com