精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.
(1)求证:BE是⊙O的切线;
(2)若CD=1,cos∠AEB= ,求BE的长.

【答案】
(1)证明:∵B、C在⊙O上,

∴OB=OC,

∴∠OBC=∠OCB,

∵EF=EB,

∴∠EBC=∠EFB,

又∵∠AFC=∠EFB,

∴∠AFC=∠EBC,

∵AE⊥OC,

∴∠AFC+∠OCB=90°,

∴∠EBC+∠OBC=90°,即BE⊥OB,

又OB是⊙O的半径,

∴EB是⊙O的切线


(2)解:设⊙O的半径为r,则OA=OC=r,

又CD=1,

∴OD=r﹣1,

∵∠AOD+∠EAB=90°,∠AEB+∠EAB=90°,

∴∠AOD=∠AEB,

∴cos∠AOD=cos∠AEB=

∴在Rt△AOD中,cos∠AOD= = ,即 =

解得:r=

∵AB是⊙O的直径,

∴AB=5,

在Rt△AEB中,cos∠AEB= =

∴AE= BE,

又AE2=AB2+BE2,即( BE)2=BE2+52

解得:BE=


【解析】(1)由∠OBC=∠OCB、∠EBC=∠EFB=∠AFC,根据∠AFC+∠OCB=90°可得∠EBC+∠OBC=90°,即可得证;(2)设⊙O的半径为r,在Rt△AOD中根据cos∠AOD=cos∠AEB= 可得r= ,由cos∠AEB= = 知AE= BE,Rt△ABE中,根据勾股定理有( BE)2=BE2+52 , 解之可得.
【考点精析】掌握垂径定理和三角形的外接圆与外心是解答本题的根本,需要知道垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.

(1)请你根据图中的数据填写表格;

姓名

平均数

众数

方差

8

8

2.8

(2)从平均数和方差相结合看,谁的成绩好些?从发展趋势来看,谁的成绩好些?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆汽车和一辆摩托车分别从AB两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1hAB两地的路程为20km③摩托车的速度为45km/h,汽车的速度为60km/h④汽车出发1小时后与摩托车相遇,此时距B40千米.其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意,解答问题:

(1)如图1,已知直线y=2x+4x轴、y轴分别交于A、B两点,求线段AB的长.

(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.

(3)在(2)的基础上,若有一点Dx轴上运动,当满足DM=DN时,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P,DP⊥BC,BP=4cm,AD的长为(

A. 5 B. 3 C. 4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】北京,上海两地的两个厂家同时生产同种型号的计算机,除本地使用外,北京可调运给外地10台,上海可调运给外地4台,现协议给武汉6台,重庆8台,每台的运费如下表所示,现有一种调运方案,预计的运费为7600元,这种调运方案中,北京,上海应分别调往武汉,重庆各多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示,这样的几何体只有一种吗?

1它最多需要多少个小立方体?它最少需要多少个小立方体?

2请你画出这两种情况下的从左面看到的形状图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:

BD=CE;BDCE;③∠ACE+DBC=45°;BE2=2(AD2+AB2),

其中结论正确的个数是

A.1 B.2 C3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【新知理解】

如图①,点C在线段AB上,图中共有三条线段ABACBC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB巧点”.

线段的中点__________这条线段的巧点;(填不是.

AB = 12cm,点C是线段AB的巧点,则AC=___________cm

【解决问题】

3如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点PQ同时出发,当其中一点到达终点时,运动停止,设移动的时间为ts.t为何值时,APQ三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由

查看答案和解析>>

同步练习册答案