【题目】甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.
(1)请你根据图中的数据填写表格;
姓名 | 平均数 | 众数 | 方差 |
甲 | 8 | ||
乙 | 8 | 2.8 |
(2)从平均数和方差相结合看,谁的成绩好些?从发展趋势来看,谁的成绩好些?
科目:初中数学 来源: 题型:
【题目】如图1的7张长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A. a=b B. a=2b
C. a=3b D. a=4b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图1),然后拼成一个平行四边形(如图2)。那么通过计算两个图形的阴影部分的面积,可以验证成立的公式是( )
A.a2-b2=(a-b)2 | B.(a+b)2="a+2ab+b" |
C.(a-b)2=a2-2ab+b2 | D.a2-b2=(a-b)(a+b) |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将一张正方形纸片剪成四个大小一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去。
(1)完成下表:
剪的次数 | 1 | 2 | 3 | 4 | 5 | ... | n |
小正方形的个数 | 4 | 7 | 10 | ... |
(2) .(用含n的代数式表示)
(3)按上述方法,能否得到2018个小正方形?如果能,请求出n;如不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据题意解答
(1)如图1,已知E是矩形ABCD的边AB上一点,EF⊥DE交BC于点F,证明:△ADE∽△BFE.
(2)这个相似的基本图形像字母K,可以称为“K”型相似,但更因为图形的结构特征是一条线上有3个垂直关系,也常被称为“一线三垂直”,那普通的3个等角又会怎样呢?
变式一如图2,已知等边三角形ABC,点D、E分别为BC,AC上的点,∠ADE=60°.
①图中有相似三角形吗?请说明理由.
②如图3,若将∠ADE在△ABC的内部(∠ADE两边不与BC重合),绕点D逆时针旋转一定的角度,还有相似三角形吗?
(3)变式二如图4,隐藏变式1图形中的线段AE,在得到的新图形中.
①如果∠B=∠C=∠ADE=50°,图中有相似三角形吗?请说明理由.
②如图5,若∠B=∠C=∠ADE=∠a,∠a为任意角,还有相似三角形吗?
(4)交式三已知,相邻两条平形直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则cosa的值是(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设边长为3的正方形的对角线长为a.下列关于a的四种说法: ①a是无理数;
②a可以用数轴上的一个点来表示;
③3<a<4;
④a是18的算术平方根.
其中,所有正确说法的序号是( )
A.①④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是王老师在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:
-,0,,,18,,,-0.56,3.14159,,,,0.8080080008…,-.
(1)有理数集合:________________________________________________________________________;
(2)无理数集合:________________________________________________________________________;
(3)非负整数集合:________________________________________________________________________;
(4)分数集合:________________________________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:
(1)探究:若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 , 并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.
(1)求证:BE是⊙O的切线;
(2)若CD=1,cos∠AEB= ,求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com