【题目】已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)用直尺和圆规在图中作出⊙O(不写作法,保留作图痕迹),判断直线BC与⊙O的位置关系,并说明理由;(友情提醒:必须作在答题卷上哦!)
(2)若AC=3,BC=4,求⊙O的半径长.
【答案】(1)图见解析,直线BC与⊙O相切,理由见解析;(2)
【解析】
(1)因为AD是弦,所以圆心O即在AB上,也在AD的垂直平分线上,据此作图即可;因为D在圆上,所以只要能证明OD⊥BC就说明BC为⊙O的切线;
(2)设⊙O的半径为x,证△BOD∽△BAC得,即,解之可得.
解:(1)直线BC与⊙O相切.理由如下:
作图如图所示,连接OD,
∵AD为角平分线,
∴∠OAD=∠CAD,
又∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠ODA,
∴OD∥AC,
∵AC⊥BC,
∴OD⊥BC,
∴直线BC与⊙O相切;
(2)设⊙O的半径为x,
∵AC=3,BC=4,
∵AB=5,
又OD⊥BC,则OD∥BC,
∴△BOD∽△BAC,
∴,
即,
解得x=,
∴⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线(m>0)与x轴交于A,B两点,点B在点A的右侧,顶点为C,抛物线与y轴交于点D,直线CA交y轴于E,且.
(1)求点A,点B的坐标;
(2)将△BCO绕点C逆时针旋转一定角度后,点B与点A重合,点O恰好落在y轴上,
①求直线CE的解析式;
②求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,点E,F是对角线BD上的两点,且BE=DF.
(1)如果四边形AECF是平行四边形,求证:四边形ABCD也是平行四边形;
(2)如果四边形AECF是菱形,求证:四边形ABCD也是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校有一批复印任务,原来由甲复印店承接,按每100页40元计费.现乙复印店表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印店每月收费情况如图所示.
(1)乙复印店的每月承包费是多少元?
(2)当每月复印多少页时两复印店实际收费相同,费用是多少元?
(3)求甲、乙复印店的函数表达式.
(4)如果每月复印页数在1200页左右,那么应选择哪家复印店更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx(k>0)与双曲线y=交于A、B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD=.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,在轴上任取一点,连接,作的垂直平分线,过点作轴的垂线,与交于点.设点的坐标为.
(Ⅰ)当的坐标取时,点的坐标为________;
(Ⅱ)求,满足的关系式;
(Ⅲ)是否存在点,使得恰为等边三角形?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,分别以顶点A、B为圆心,大于AB为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线MN,与AB交于点O,以O为圆心,OA为半径作圆,⊙O恰好经过点C.下列结论中,错误的是( )
A.AB是⊙O的直径B.∠ACB=90°
C.△ABC是⊙O内接三角形D.O是△ABC的内心
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com