精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=kxk0)与双曲线y=交于AB两点,BC⊥x轴于C,连接ACy轴于D,下列结论:①AB关于原点对称;②△ABC的面积为定值;③DAC的中点;④SAOD=.其中正确结论的个数为( )

A.1B.2C.3D.4

【答案】C

【解析】

根据反比例函数的对称性、函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|及三角形中位线的判定依次分析即可.

解:反比例函数与正比例函数若有交点,一定是两个,且关于原点对称,根据AB关于原点对称,SABC为即A点横纵坐标的乘积,为定值1因为AO=BOOD∥BC,所以OD△ABC的中位线,即DAC中点,所以正确;

△ADO中,因为ADy轴并不垂直,所以面积不等于k的一半,即不会等于,所以错误.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:345;三个连续的偶数中的勾股数6810;事实上,勾股数的正整数倍仍然是勾股数.

(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1b2n2+2nc2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的abc的数是一组勾股数.

(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a(m2n2)bmnc(m2+n2)(mn为正整数,mn时,abc构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:

①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.

其中正确结论的序号是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,∠C90°AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O

1)用直尺和圆规在图中作出⊙O(不写作法,保留作图痕迹),判断直线BC与⊙O的位置关系,并说明理由;(友情提醒:必须作在答题卷上哦!)

2)若AC3BC4,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,∠C90°AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O

1)用直尺和圆规在图中作出⊙O(不写作法,保留作图痕迹),判断直线BC与⊙O的位置关系,并说明理由;(友情提醒:必须作在答题卷上哦!)

2)若AC3BC4,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河流两岸PQMN互相平行,CD是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB30°,然后沿河岸走了100m到达B处,测得∠CBF70°,求河流的宽度(结果精确到个位,1.73sin70°0.94cos70°0.34tan70°2.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 请结合题意填空,完成本题的解答.

)解不等式,得   

)解不等式,得   

)把不等式的解集在数轴上表示出来.

)原不等式组的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC,∠BAC54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC的度数是(  )

A. 106°B. 108°C. 110°D. 112°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将菱形纸片折叠,使点落在边的点处,折痕为,若,则的度数是______

查看答案和解析>>

同步练习册答案