【题目】在平面直角坐标系xOy中,直线的图象经过(1,0),(-2,3)两点,且与y轴交于点A。
(1)求直线的表达式;
(2)过点A做平行于x轴的直线l,l与抛物线(a>0)交于B,C两点。若BC≥4,求a的取值范围;
(3)设直线与抛物线交于D,E两点,当3≤DE≤5时,结合函数的图象,直接写出m的取值范围是____________________。
【答案】(1)y=-x+1;(2)0<a≤;(3)-4≤m≤0.
【解析】
(1)利用待定系数法求函数的解析式即可求解,
(2)依题意画出图形,结合二次函数的开口大小规律可求出a的取值范围,
(3)依题意,联立方程组 ,消去y得x2+x+m-2=0,设D(x1,y1),E(x2,y2),由DE==以及x1+x2=-1,x1x2=m-2,y1+y2=3,y1y2=m,列出方程即可解决问题.
解:(1)因为直线的图象经过(1,0),(-2,3)两点,
所以解得
所以直线y=kx+b的表达式为y=-x+1.
(2)如图所示:
直线y=1与抛物线G1:y=ax2-1(a>0)的交点B,C关于y轴对称.
所以当线段BC的长等于4时,B,C两点的坐标分别为(2,1),(-2,1),
把点B代入y=ax2-1,1=4a-1,
解得,
所以,由抛物线二次项系数的性质及已知a>0可知,
当BC≥4时,0<a≤.
(3)依题意,联立方程组,消去y得x2+x+m-2=0,
设D(x1,y1),E(x2,y2),
∴DE==
∵x1+x2=-1,x1x2=m-2,y1+y2=3,y1y2=m,
∴DE=,
当DE=3时,=3,解得m=0,
当DE=5时,=5,解得m=-4,
∴-4≤m≤0.
故答案为:(1)y=-x+1;(2)0<a≤;(3)-4≤m≤0.
科目:初中数学 来源: 题型:
【题目】画出二次函数的图象.
(1)利用图象求方程的近似很(结渠精确到);
(2)设该抛物线的顶点为M,它与直线y=-3的两个交点分别为C、D,求△MCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某飞机着陆后滑行的距离y(米)关于着陆后滑行的时间x(秒)的函数关系是y=﹣2x2+bx(b为常数).若该飞机着陆后滑行20秒才停下来,则该型飞机着陆后的滑行距离是_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.
(1)若AC=12cm,BC=9cm,求⊙O的半径r;
(2)若AC=b,BC=a,AB=c,求⊙O的半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
(1)求证:四边形DBCF是平行四边形
(2)若∠A=30°,BC=4,CF=6,求CD的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明想用镜子测量一棵松树的高度,但树旁有一条河,不能测量镜子与树之间的距离,于是小明两次利用镜子,第一次他把镜子放在C点,人在F点正好在镜子中看见树尖A;第二次把镜子放在D点,人在H点正好在镜子中看到树尖A.已知小明的眼睛距离地面的距离EF=1.68米,量得CD=10米,CF=1.2米,DH=3.6米,利用这些数据你能求出这棵松树的高度吗?试试看.(友情提示:∠ACB=∠ECF,∠ADF=∠GDH)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空:(1)如图,△ABC绕点A旋转得到△ADE,旋转中心是点 ,点B的对应点是点 ,点C的对应点是点 ,∠ 等于于旋转角;
(2)如图,△ABC绕点O旋转得到△DEF,旋转中心是点 ,点A的对应点是点 ,点B的对应点是点 ,点C的对应点是点 ,∠ 等于于旋转角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点P是BC边上任意一点(点P与点B,C不重合),平行四边形AFPE的顶点F,E分别在AB,AC上.已知BC=2,S△ABC=1.设BP=x,平行四边形AFPE的面积为y.
(1)求y与x的函数关系式;
(2)上述函数有最大值或最小值吗?若有,则当x取何值时,y有这样的值,并求出该值;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com