精英家教网 > 初中数学 > 题目详情

【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形的三个顶点的坐标分别为

1)作出三角形关于轴对称的三角形

2)点的坐标为 .

3)①利用网络画出线段的垂直平分线;②为直线上上一动点,则的最小值为 .

【答案】1)见解析(2)点的坐标为;(3)①见解析.

【解析】

1)首先确定ABC三点关于y轴的对称点位置A1B1C1,再连接即可得到ABC关于y轴对称的A1B1C1

2)根据平面直角坐标系写出点的坐标;

3)①根据垂直平分线的定义画图即可;

②根据轴对称的性质以及两点之间线段最短得的最小值为BC的长,再由勾股定理求解即可.

1)如图所示:

2)点的坐标为

3)①如图所示:

的最小值为BC的长,即BC=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为(  )

A. 4 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线和直线交于轴上一点,且分别交轴于点、点,且.

1)求的值;

2)如图1,点是直线上一点,且在轴上方,当时,在线段上取一点,使得,点分别为轴、轴上的动点,连接,将沿翻折至,求的最小值;

3)如图2分别为射线上的动点,连接是否存在这样的点,使得为等腰三角形,为直角三角形同时成立.请直接写出满足条件的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)|﹣2|+tan30°+(2018﹣π)0-(-1

(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;

(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰的顶角的度数是,点是腰的黄金分割点,将绕着点按照顺时针方向旋转一个角度后点落在点处,联结,当时,这个旋转角是________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为_____m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCDCD边上一点,以点A为中心把△ADE顺时针旋转90°。

(1)在图中画出旋转后的图形;

(2)若旋转后E点的对应点记为M,点FBC上,且∠EAF=45°,连接EF。

①求证:△AMF≌△AEF;

②若正方形的边长为6,AE=,求EF的长.

查看答案和解析>>

同步练习册答案