【题目】在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形的三个顶点的坐标分别为,,
(1)作出三角形关于轴对称的三角形
(2)点的坐标为 .
(3)①利用网络画出线段的垂直平分线;②为直线上上一动点,则的最小值为 .
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( )
A. 4 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知直线和直线交于轴上一点,且分别交轴于点、点,且.
(1)求的值;
(2)如图1,点是直线上一点,且在轴上方,当时,在线段上取一点,使得,点分别为轴、轴上的动点,连接,将沿翻折至,求的最小值;
(3)如图2,分别为射线上的动点,连接是否存在这样的点,使得为等腰三角形,为直角三角形同时成立.请直接写出满足条件的点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为_____m2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD中CD边上一点,以点A为中心把△ADE顺时针旋转90°。
(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在BC上,且∠EAF=45°,连接EF。
①求证:△AMF≌△AEF;
②若正方形的边长为6,AE=,求EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com