分析 由正方形和等边三角形的性质得出AE=AD=BE=BC,∠DAE=∠CBE=30°,求出∠ADE=∠BCE=75°,再求出∠EDC=∠ECD=15°,即可得出∠CED.
解答 解:∵四边形ABCD是正方形,
∴∠BAD=∠ABC=∠ADC=∠BCD=90°,AB=BC=CD=DA,
∵△ABE是等边三角形,
∴AB=AE=BE,∠BAE=∠ABE=60°,
∴AE=AD=BE=BC,∠DAE=∠CBE=30°,
∴∠ADE=∠BCE=$\frac{1}{2}$(180°-30°)=75°,
∴∠EDC=∠ECD=15°,
∴∠CED=180°-15°-15°=150°.
故答案为:150°.
点评 本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质以及三角形内角和定理;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (2a+b)(2b-a) | B. | (-a+b)(a-b) | C. | (a+b)(a-2b) | D. | (a+b)(b-a) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com