精英家教网 > 初中数学 > 题目详情

【题目】|a1|+b+320,则a+b=(  )

A. 4 B. 2 C. 2 D. 4

【答案】B

【解析】

根据非负数的性质列式求出ab的值,然后代入代数式进行计算即可得解.

由题意得,a1=0,b+3=0

解得a=1,b=3,

所以,a+b=1+(3)=2.

故答案选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.
(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
(4)玲玲全程骑车的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某风景区对5个旅游景点的游客人数进行了统计,有关数据如下表:

景点

A

B

C

D

E

票价(元)

10

10

15

20

25

平均日人数(千人)

1

1

2

3

2


(1)如果这个星期天你去此风景区游玩,小刚、小明也去了,你在哪个景点遇见他们两个的机会较大?为什么?
(2)如果到了这个风景区,你不想把这几个景点全部参观完,但又不知选哪一个,于是你想出一个主意:抓阄,那么,你抓出哪种票价的机会较大有多大?此时你参观哪个景点的机会较大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点M的坐标是(5,4),M与y轴相切于点C,与x轴相交于A、B两点.

(1)则点A、B、C的坐标分别是A(__,__),B(__,__),C(__,__);

(2)设经过A、B两点的抛物线解析式为,它的顶点为F,求证:直线FA与M相切;

(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使PBC是等腰三角形.如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣16 )﹣(﹣10 )﹣(+1
(2)(﹣ )×(﹣1 )÷(﹣2
(3)(﹣2)2×6﹣(﹣2)3÷4
(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数(x0)的图象与直线y=x交于点M,AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.

(1)求k的值;

(2)点P在反比例函数(x0)的图象上,若点P的横坐标为3,EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.

(1)求线段AB的长;

(2)求直线CE的解析式;

(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a2+b+5=0,则代数式3a2+3b+10=0的值为(

A. 25 B. 5 C. -5 D. 0

查看答案和解析>>

同步练习册答案