精英家教网 > 初中数学 > 题目详情

【题目】如图,P的角平分线OC上一点,PNOB于点N,点M是线段ON上一点,已知OM=3,ON=4,DOA上一点,若满足PD=PM,OD的长度为________

【答案】3或5

【解析】

过点PPEOA于点E,分点D在线段OE上,点D在射线EA上两种情况讨论,利用角平分线的性质可得PN=PE,即可求OE=ON=4,由题意可证PMN≌△PDE,可求OD的长.

如图:过点PPEOA于点E

OC平分∠AOBPEOAPNOB
PE=PN
PE=PNOP=OP
∴△OPE≌△OPNHL
OE=ON=4
OM=3ON=4
MN=1
若点D在线段OE上,
PM=PDPE=PN
∴△PMN≌△PDEHL
DE=MN=1
OD=OE-DE=3
若点D在射线EA上,
PM=PDPE=PN
∴△PMN≌△PDEHL
DE=MN=1
OD=OE+DE=5
故答案为35

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:

平均成绩(环)

中位数(环)

众数(环)

方差

8

b

8

s2

a

7

c

0.6

(1)补充表格中a,b,c的值,并求甲的方差s2

(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°B处的仰角为30°.已知无人飞机的飞行速度为4/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=3,CD=4,点ECD上,且DE=1.

(1)感知:如图①,连接AE,过点EEFAE,交BC于点F,连接AE,易证:△ADE≌△ECF(不需要证明);

(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点EEFPE,交BC于点F,连接PF.求证:△PDE和△ECF相似;

(3)应用:如图③,若EFAB于点F,EFPE,其他条件不变,且△PEF的面积是6,则AP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,A(5 0), B(0 5), C(2 0),AB

(1)如图2D为第一象限内一点,CDBC于点C,ADAB于点A,求点D坐标;

(2)E轴负半轴上一动点,连BE,在轴下方做EFBE于点E,并且EF=BE,FC,直接写出当CF最短时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DMEN分别垂直平分ACBC,交ABMN两点,DMEN相交于点F

1)若△CMN的周长为15cm,求AB的长;

2)若∠MFN=70°,求∠MCN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO 1.2 米,当车门打开角度∠AOB40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,BD和CD为⊙O的切线,切点分别为B和C.

(1)求证:AC∥OD;

(2)当BC=BD,且BD=6cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案