【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)当AB与AC满足怎样数量关系时,四边形AECF为菱形.
【答案】(1)见解析;(2),证明见解析
【解析】
(1)首先根据矩形与折叠的性质,通过“角边角”证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形即可证明AECF是平行四边形;
(2)若四边形AECF为菱形,则AE=CE,在Rt△ABC中利用折叠的性质可得∠BAE=∠CAE=∠ACB=30°,根据30°角所对直角边为斜边的一半可得.
(1)∵四边形ABCD为矩形,
∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.
由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA,
∴∠EAB=∠DCF,
在△ABE和△CDF中
∴△ABE≌△CDF(ASA),
∴DF=BE,
∴AF=EC,
又∵AF∥EC,
∴四边形AECF是平行四边形;
(2)时,四边形AECF为菱形,
若四边形AECF为菱形,
∴AE=CE,
∴∠CAE=∠ACB,
∵∠BAE=∠CAE,
∴∠BAE=∠CAE=∠ACB=30°,
∴,
∴当时,四边形AECF为菱形.
科目:初中数学 来源: 题型:
【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若,则叫做以为底的对数,记作.比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:.理由如下:设,,所以,,所以,由对数的定义得,又因为,所以.解决以下问题:
(1)将指数转化为对数式: .
(2)仿照上面的材料,试证明:
(3)拓展运用:计算 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座楼亭前的台阶上的点A处测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知点A的高度AB为3 m,台阶AC的坡度为1∶,且B,C,E三点在同一条直线上,那么这棵树DE的高度为( )
A. 6 m B. 7 m C. 8 m D. 9 m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD对角线交于点E,△ABD的外接圆⊙O交AC于点F.若FB=FC.
(1)证明:=FEFA;
(2)证明:BC是⊙O的切线;
(3)若EF=2,求出四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程2x2﹣3x﹣6=0有两个实数根a,b,直线经过点A(a+b,0)和点B(0,ab),则直线l的函数表达式为( )
A.y=2x﹣3B.y=2x+3C.y=﹣2x+3D.y=﹣2x﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究,
(1)如图①,在矩形ABCD中,AB=2AD,P为CD边上的中点,试比较∠APB和∠ADB的大小关系,并说明理由;
(2)如图②,在正方形ABCD中,P为CD上任意一点,试问当P点位于何处时∠APB最大?并说明理由;
问题解决
(3)某儿童游乐场的平面图如图③所示,场所工作人员想在OD边上点P处安装监控装置,用来监控OC边上的AB段,为了让监控效果最佳,必须要求∠APB最大,已知:∠DOC=60°,OA=400米,AB=200米,问在OD边上是否存在一点P,使得∠APB最大,若存在,请求出此时OP的长和∠APB的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线过点.
(1)求出抛物线解析式的一般式;
(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点的坐标;
(3)若点为轴上任意一点,在(2)的结论下,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.
(1)判断:
①在平行四边形、矩形、菱形中,一定是神奇四边形的是 ;
②命题:如图1,在四边形中,则四边形是神奇四边形.此命题是_____(填“真”或“假”)命题;
③神奇四边形的中点四边形是
(2)如图2,分别以的直角边和斜边为边向外作正方形和正方形,连接
①求证:四边形是神奇四边形;
②若,求的长;
(3)如图3,四边形是神奇四边形,若分别是方程的两根,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE是⊙O的切线.
(2)求直径AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com