【题目】如图,两个边长都为2的正方形A BCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕D点旋转,那么它们重叠部分的面积为( )
A. 4 B. 2 C. 1 D.
【答案】C
【解析】
连OA,OB,设OR交BC于M,OP交AB于N,由四边形ABCD为正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四边形ORQP为正方形,得∠NOM=90°,所以∠MOB=∠NOA,则△OBM≌△OAN,即可得到S四边形MONB=S△AOB=×2×2=1.
连OA,OB,设OR交BC于M,OP交AB于N,如图,
∵四边形ABCD为正方形,
∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,
而四边形ORQP为正方形,
∴∠NOM=90°,
∴∠MOB=∠NOA,
∴△OBM≌△OAN,
∴S四边形MONB=S△AOB=×2×2=1,
即它们重叠部分的面积为1.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,OABC的边OC在y轴的正半轴上,,,反比例函数的图象经过的B.
求点B的坐标和反比例函数的关系式;
如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B关于直线MN成轴对称,求线段ON的长;
如图3,将线段OA延长交的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,则△ABE的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M.
求证:PFM为等腰三角形;
(3)作PQFM于点Q,当点P从横坐标2013处运动到横坐标2017处时,请求出点Q运动的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,A(1,-1)、B(l,-3)、C(4,-3).
(1)△ 是△ABC关于x轴的对称图形,则点A的对称点的坐标是_______;
(2)将△ABC绕点(0,1)逆时针旋转90 °得到△ABC,则B点的对应点B的坐标是____;
(3)△ 与△ABC是否关于某条直线成轴对称?若成轴对称,则对称轴的解析式是_________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,四边形ABCD中,AB=7,BC=3,∠ABC=∠ACD=∠ADC=45°,求BD的长;
(2)如图2,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由.
下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (两直线平行,内错角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分
组别 | |||||
正确字数 | |||||
人数 | 10 | 15 | 25 |
根据以上信息解决下列问题:
(1)在统计表中, , ,并补全条形统计图.
(2)扇形统计图中“组”所对应的圆心角的度数是 .
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com