【题目】如图1,有一个“z”字图形,其中AB∥CD,AB:CD:BC=1:2:3.
(1)如图2,若以BC为直径的⊙O恰好经过点D,连结AO.
①求cosC.
②当AB=2时,求AO的长.
(2)如图3,当A,B,C,D四点恰好在同一个圆上时.求∠C的度数.
【答案】(1)①cosC=;②当AB=2时,AO=;(2)∠C=60°.
【解析】
(1)①连接BD,根据圆周角定理得到∠CDB=90°,根据余弦的定义计算;
②作OE⊥CD于E,证明△AOB≌△EOC,根据全等三角形的性质得到∠A=∠CEO=90°,根据勾股定理计算即可;
(2)证明△AFB为等边三角形,根据等边三角形的性质、圆周角定理计算.
解:(1)①如图2,连接BD,
∵BC为⊙O的直径,
∴∠CDB=90°,
在Rt△BCD中,cosC==;
②如图2,作OE⊥CD于E,
则CE=DE,
∵AB=2,AB:CD:BC=1:2:3,
∴CD=4,BC=6,
∴AB=CE=2,
∵AB∥CD,
∴∠C=∠ABO,
在△AOB和△EOC中,
,
∴△AOB≌△EOC(SAS),
∴∠A=∠CEO=90°,
∴OA= =;
(2)如图3,连接AD交BC于F,
∵AB∥CD,
∴△AFB∽△DFC,
∴,
∴,
∵,
∴BF=AB,
∴∠BFA=∠A,
∵AB∥CD,
∴∠B=∠C,
由圆周角定理得,∠A=∠C,
∴∠A=∠B=∠AFB,
∴△AFB为等边三角形,
∴∠C=∠B=60°.
科目:初中数学 来源: 题型:
【题目】车间有20名工人,某天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个) | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 19 | 20 |
工人人数(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求这一天20名工人生产零件的平均个数;
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,P(m,n)在抛物线y=ax2-4ax(a>0)上,E为抛物线的顶点.
(1)求点E的坐标(用含a的式子表示);
(2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点E作x轴的平行线DE,过点P作x轴的垂线交DE于点D,连接CD,求证:CD∥OE;
(3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于A、B两点,平移后的抛物线的顶点为Q,P是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过Q、D作x轴、y轴的平行线交于点E,且∠EPQ=2∠APQ,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).
(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';
(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A'B'C',请直接画出旋转后的△A'B'C';
(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=5,BC=8,若△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以点A,D,E为顶点的三角形是等腰三角形,则m的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,∠C=60°,AD是⊙O的直径,Q是AD延长线上的一点,且BQ=AB.
(1)求证:BQ是⊙O的切线;
(2)若AQ=6.
①求⊙O的半径;
②P是劣弧AB上的一个动点,过点P作EF∥AB,EF分别交CA、CB的延长线于E、F两点,连接OP,当OP和AB之间是什么位置关系时,线段EF取得最大值?判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是ABC的外接圆,AB为直径,∠BAC的平分线交于点D,过点D作DEAC分别交AC、AB的延长线于点E、F.
(1)求证:EF是的切线;
(2)若AC=4,CE=2,求的长度.(结果保留)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣x+c与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,直线y=﹣x+b与抛物线相交于点A,D,与y轴交于点E,已知OB=,OC=2.
(1)求a,b,c的值;
(2)点P是抛物线上的一个动点,若直线PE∥AC,连接PA、PE,求tan∠APE的值;
(3)动点Q从点C出发,沿着y轴的负方向运动,是否存在某一位置,使得∠OAQ+∠OAD=30°?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com