【题目】某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆游泳的次数为次(为正整数).
(1)根据题意,填写下表:
游泳次数 | 5 | 10 | 15 | … | |
方式一的总费用(元) | 350 | 650 | … | ||
方式二的总费用(元) | 200 | 400 | … |
(2)若小亮计划今年游泳的总费用为2000元,选择哪种付费方式,他游泳的次数比较多;
(3)当时,小亮选择哪种付费方式更合算.并说明理由.
【答案】(1)500,,600,.(2)小亮选择方式一游泳次数比较多.(3)当时,有,小亮选择方式二更合算;当时,有,小亮选择方式一更合算.
【解析】
(1)根据两种收费方式填空,并求出函数关系式即可;
(2)将y=2000代入(1)中的函数关系式,求出相应的x的值,即可得到小亮计划拿出2000元用于在此游泳馆游泳,采用哪种付费方式游泳次数比较多;
(3)根据题意,求出两种方式下,x为多少时,收费一样,然后即可得到当x>12时,哪种付费方式更合算.
(1)500,,600,.
方式一游泳十次:;
方式一游泳x次:;
方式二游泳15次:;
方式二游泳x次:;
(2)方式一:,解得.
方式二:,解得.
∵,
∴小亮选择方式一游泳次数比较多.
(3)设方式一与方式二的总费用的差为元.
则,即.
当时,即,得.
∴当时,小亮选择这两种方式一样合算.
∵,
∴随的增大而减小.
∴当时,有,小亮选择方式二更合算;
当时,有,小亮选择方式一更合算.
科目:初中数学 来源: 题型:
【题目】马山被誉为“中国民间文化艺术之乡”,马山的民族文化丰富多彩,形式多样.为了了解某学学生对马山民族文化的喜爱情况,某校开展了“我最喜爱的民俗活动”调查问卷,其中包括:壮族三声部民歌,壮族扁担舞,会鼓,采茶舞.将调查问卷结果收集整理后,绘制了以下不完整的条形统计图(图①)和扇形统计图(图②),根据图中所提供的信息解答下列问题:
(1)这次抽样调查中,一共抽查了名学生,项所对应圆心角的度数为;
(2)请补全条形统计图;
(3)若九(1)班要从甲、乙、丙和丁这四人中选两个人参与调查,请用列表法或画树状图法求出恰好选中甲乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(列方程解答)
(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,一次函数,
有下列结论:
①当时,随的增大而减小;
②二次函数的图象与轴交点的坐标为和;
③当时,;
④在实数范围内,对于的同一个值,这两个函数所对应的函数值均成立,则.
其中,正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关.第一道题有个选项,第二道题有个选项,这两道题小新都不会,不过小新还有一个“求助卡”没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.
(1)如果小新在第--题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;
(2)从概率的角度分析,你建议小新在第几题使用“求助卡”.为什么.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为应对新型冠状病毒,某药店老板到厂家选购、两种品牌的医用外科口罩,品牌口罩每个进价比品牌口罩每个进价多0.7元,若用7200元购进品牌的数量是用5000元购进品牌数量的2倍.
(1)求、两种品牌的口罩每个进价分别为多少元?
(2)若品牌口罩每个售价为2.1元,品牌口罩每个售价为3元,药店老板决定一次性购进、两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进品牌口罩多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax2+bx+c(a≠0)的顶点为A(s,t)(其中s≠0).
(1)若抛物线经过(2,7)和(-3,37)两点,且s=1.
①求抛物线的解析式;
②若n>1,设点M(n,y1),N(n+1,y2)在抛物线上,比较y1,y2的大小关系,并说明理由;
(2)若a=2,c=-2,直线y=2x+m与抛物线y=ax2+bx+c的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出b和h的函数关系式;
(3)若点A在抛物线y=上,且2≤s<3时,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点,在轴的正半轴上,顶点在直线位于第一象限的图像上,反比例函数的图像经过点,交于点,.
(1)如果,求点的坐标;
(2)连接,当时,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com