精英家教网 > 初中数学 > 题目详情

【题目】对于平面直角坐标系XOY中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m//x轴,过点B作直线n//y轴,直线mn相交于点 C.当线段ACBC的长度相等时,称点B为点A的等距点,称ABC的面积为点A的等距面积.

例如:如图,点A(21),点B(54),因为AC=BC=3,所以点B为点A的等距点,此时点A的等距面积为.

(1)A的坐标是(01),在点B1(10)B2(23)B3(2,-2)中,点A的等距点为

(2)A的坐标是(31),点A的等距点B在第三象限,且点A的等距面积等于,求此时点B的坐标.

【答案】(1)B1,B2;(2

【解析】

(1)根据题目示例即可判断出点A的等距点为B1 B2

(2)设点B的坐标为(xy)(xy<0),由题意则有|x-(-3)|=|y-1| ,解方程即可求得答案.

(1)根据等距点的概念画图如下,

可知AC1=B1C1AC2=B2C2AC3B3C3

所以点A的等距点是B1B2

故答案为:B1B2

(2)设点B的坐标为(xy)(xy<0)

则有|x-(-3)|=|y-1|

得:

得:舍去)

所以.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长为cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,在ABC中,C=60°,A=40°.

(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);

(2)求证:BD平分CBA.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )

A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分

分组

家庭用水量x/吨

家庭数/户

A

0≤x≤4.0

4

B

4.0<x≤6.5

13

C

6.5<x≤9.0

D

9.0<x≤11.5

E

11.5<x≤14.0

6

F

x>14.0

3

根据以上信息,解答下列问题

(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是 %;
(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 %;
(3)家庭用水量的中位数落在组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的 ,这时乙队加入,两队还需同时施工15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述中,正确的有( )

①如果,那么;②满足条件n不存在;

③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;

④ΔABC中,若∠A+∠B=2∠C, ∠A-∠C=40°,则这个△ABC为钝角三角形.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.

(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.

(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明:

已知:AB//CD,连ADBC于点F,∠1=2,求证:∠B+CDE=180°

证明:∵∠1= ( )

又∵∠1=2

∴∠BFD=2( )

BC// ( )

∴∠C+ =180°( )

又∵AB//CD

∴∠B=C( )

∴∠B+CDE=180°

查看答案和解析>>

同步练习册答案