精英家教网 > 初中数学 > 题目详情

【题目】某社会团体准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进5件甲种防护服和4件乙种防护服需要2万元,购进10件甲种防护服和3件乙种防护服需要3万元.

1)甲种防护服和乙种防护服每件各多少元?

2)实际购买时,发现厂家有两种优惠方案,方案一:购买甲种防护服超过20件时,超过的部分按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买件甲种防护服和30件乙种防护服.

①求两种方案的费用与件数的函数解析式;

②请你帮该社会团体决定选择哪种方案更合算.

【答案】1)甲种防护服每件2400元,乙种防护服每件2000元;(2)①,②当购买甲种防护服65件时,两种方案一样;当购买甲种防护服的,件数超过20件而少于65件时,选择方案二更合算;当购买甲种防,护服的件数多于65件时,选择方案一更合算.

【解析】

1)根据题意列二元一次方程组即可求解;

2)①根据题意找出两种方案的函数关系式即可;②分三种情况进行比较即可.

解:(1)设甲种防护服每件元,乙种防护服每件元,

根据题意,得

解得

答:甲种防护服每件2400元,乙种防护服每件2000.

2)①方案一:

方案二:

②当时,

即:

解得:

∴当

即:,解得

时,

即:,解得.

∴当购买甲种防护服65件时,两种方案一样;当购买甲种防护服的件数超过20件而少于65件时,选择方案二更合算;当购买甲种防护服的件数多于65件时,选择方案一更合算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AECD垂直交BC的延长线于点E,∠EAF45°,且AFABAE的两侧,EFAF

1)依题意补全图形.

2)①在AE上找一点P,使点P到点B,点C的距离和最短;

②求证:点DAFEF的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,

(1)写出数轴上点B表示的数   

(2)|5﹣3|表示53之差的绝对值,实际上也可理解为53两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离.试探索:

①:若|x﹣8|=2,则x=   

:|x+12|+|x﹣8|的最小值为   

(3)动点PO点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t为多少秒时?A,P两点之间的距离为2;

(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.问当t为多少秒时?P,Q之间的距离为4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1【特殊发现】如图1AB⊥BCB,CD⊥BCC,连接BD,AAF⊥BD,BDE,BCF,BF=1BC=3,则AB·CD=

2【类比探究】如图2,在线段BC上存在点E,F,连接AF,DE交于点H,若∠ABC=∠AHD=∠ECD,求证:AB·CD=BF·CE

3【解决问题】如图3,在等腰△ABC中,AB=AC=4EAB中点,DAE中点,过点D作直线DM∥BC,在直线DM上取一点F,连接BFCE于点H,使∠FHC=∠ABC,问:DF·BC是否为定值?若是,请求出,若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣51),B(﹣22),C(﹣14),请按下列要求画图:

1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1

2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个一次函数满足,那么称这两个一次函数为平行一次函数

如图,已知函数的图象与x轴、y轴分别交于AB两点,一次函数平行一次函数

若函数的图象过点,求b的值;

若函数的图象与两坐标轴围成的三角形和构成位似图形,位似中心为原点,位似比为12,求函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有理数ab在数轴上的对应点如图所示.

(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;

(2)已知有理数ab,计算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在合肥地铁3号线某站通道的建设中,建设工人将坡长为20、坡角为的斜坡通道改造成坡角为的斜坡通道,使斜坡的起点从点A处向左平移至点D处,求改造后的斜坡通道BD的长结果精确到参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,

以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以

算出图1中所有圆圈的个数为123n

如果图中的圆圈共有13层,请解决下列问题:

1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1234……,则最底层最左

边这个圆圈中的数是

2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数-23,-22,-21,-20……,求

最底层最右边圆圈内的数是_______

3)求图4中所有圆圈中各数的绝对值之和.

查看答案和解析>>

同步练习册答案