【题目】如图,抛物线y=﹣x2+bx+c过等腰Rt△OAB的A,B两点,点B在点A的右侧,直角顶点A(0,3).
(1)求b,c的值.
(2)P是AB上方抛物线上的一点,作PQ⊥AB交OB于点Q,连接AP,是否存在点P,使四边形APQO是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1);(2)当P(2,5)时,四边形APQO是平行四边形
【解析】
(1)根据题意得到点B的坐标,把A,B的坐标代入二次函数解析式,列出关于系数b、c的方程组,通过解方程组可以求得它们的值;
(2)由条件可知OA∥PQ,则PQ=3时,OAPQ为平行四边形,设P(m,-m2+3m+3),Q(m,m),可得关于m的方程,求出m的值即可求解.
解:(1)∵A(0,3),等腰Rt△OAB,
∴AB=3=OA,
∴B(3,3),
将点A、B的坐标代入y=﹣x2+bx+c得:
,
∴,
(2)存在,
∵B(3,3),
∴OB的解析式为y=x,
∵y=﹣x2+3x+3,
设P(m,﹣m2+3m+3),Q(m,m),
∵PQ⊥AB,OA⊥AB,
∴OA∥PQ,
若四边形APQO是平行四边形,
∴PQ=﹣m2+3m+3﹣m=3,
解得m=0(舍去),m=2,
当m=2时,y=﹣4+6+3=5,
∴p(2,5),
即当P(2,5)时,四边形APQO是平行四边形.
故答案为:(1);(2)当P(2,5)时,四边形APQO是平行四边形.
科目:初中数学 来源: 题型:
【题目】已知如图:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.
(1)试说明四边形DEAF为平行四边形.
(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;
(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校从2019年1月﹣5月等月随机抽取了部分学生进行问卷调查(被调查学生每人只能选一项),将调查站果按照“A非常了解、B了解、C了解较少、D不了解”四类情况分别选行统计,并绘制成图1、图2两幅统计图、根据统计图提供的信息解答下列问题:
(1) 月抽取的调查人数最少: 月抽取的调查人数中男生、女生人数相等;
(2)求图2中“D不了解”在扇形图中所占的圆心角α的度数:
(3)若该校2019年5月份在校学生3600名,请你估计对食品安全知识“A非常了解和B了解”的学生总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。
(1)求函数y=x+2的图像上所有“中国结”的坐标;
(2)求函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;
(3)若二次函数y=(k为常数)的图像与x轴相交得到两个不同的“中国结”,试问该函数的图像与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则SAEPH=( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别交于两点,抛物线经过点,与轴另一交点为,顶点为.
(1)求抛物线的解析式;
(2)在轴上找一点,使的值最小,求的最小值;
(3)在抛物线的对称轴上是否存在一点,使得?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知PA与⊙O相切于点A,B、C是⊙O上的两点
(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,E是AD上的一点,点P从点B沿折线BE﹣ED﹣DC,运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度,如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,以下结论:①BC=10; ②cos∠ABE=;③当t=12时,△BPQ是等腰三角形;④当14≤t≤20时,y=110﹣5t,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com