【题目】已知二次函数 y=ax2+bx+c(a≠0)中,函数 y 与自变量 x 的部分对应值如下表:
(1)求二次函数的解析式;
(2)求该函数图象与 x 轴的交点坐标;
(3)不等式 ax2+bx+c+3>0 的解集是 .
【答案】(1)y=x2+2x﹣3;(2)(﹣3,0),(1,0);(3)x<﹣2 或 x>0 .
【解析】
(1)由题意解出c的值,将点(2,5),(﹣1,﹣4)代入列出方程组,解出即可;
(2)当y=0时,求出x值,即可得到该函数图象与 x 轴的交点坐标;
(3)由表格和a=1>0、抛物线开口向上即可得出解集.
(1)由题意,得 c=﹣3.
将点(2,5),(﹣1,﹣4)代入,
,
∴二次函数的解析式为 y=x2+2x﹣3;
(2)当 y=0 时,x2+2x﹣3=0, 解得:x=﹣3 或 x=1,
∴该函数图象与 x 轴的交点坐标(﹣3,0),(1,0);
(3)由表格可知,ax2+bx+c=﹣3,即 ax2+bx+c+3=0 的解为 x=﹣2 或 0,
∵a=1>0,抛物线开口向上,
∴不等式 ax2+bx+c+3>0 的解集是 x<﹣2 或 x>0.
故答案为 x<﹣2 或 x>0.
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.
(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);
(2)求△ABC的面积(用含a的代数式表示);
(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.
(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;
(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线 y=x2+bx+c 与 y 轴交于点 C,与 x 轴交于点 A 和点B(其中点 A 在 y 轴左侧,点 B 在 y 轴右侧),对称轴直线 x=交 x 轴于点 H.
(1)若抛物线y=x2+bx+c经过点(﹣4,6),求抛物线的解析式;
(2)如图1,∠ACB=90°,点P是抛物线y=x2+bx+c上位于y轴右侧的动点,且 S△ABP=S△ABC,求点 P 的坐标;
(3)如图 2,过点A作AQ∥BC交抛物线于点Q,若点Q的纵坐标为﹣c, 求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.AD与BC相交于点F,连结BE,DC,已知EF=2,CD=5,则AD=______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE, PE交边BC于点F.连接BE、DF.
(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当的值等于多少时.△PFD∽△BFP?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,.一只蝉从点沿方向以的速度爬行,一只螳螂为了捕捉这只蝉,由点沿方向以的速度爬行,一段时间后,它们分别到达了点,的位置.若此时的面积为,求它们爬行的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com